
Vikingen
FutureLook

by

Delphi Finansanalys AB

Referensmanual för Viking FutureLook™

© 1997-1999 Delphi Economics Sida 2

Översikt
Futurelook är ett unikt och mycket kraftfult verktyg för
finansanalytiker och kapitalplacerare. Med FutureLook är det
möjligt att på ett enkelt sätt göra beräkningar och testa
hypoteser. FutureLook är integrerat med Vikingen och sitter ihop
med Vinstgeneratorn vilket gör det enkelt att vinsttesta
modeller och hypoteser.
FutureLook är uppbyggt som ett enkelt programmeringsspråk. Det
är anpassat och förenklat för att lösa de problem man ställs
inför då man vill analysera finansiella tidsserier.
Fördelar med futureLook:
+
+
+

Vad är FutureLook
Till det yttre består FutureLook av några filer som lagras i
Vikingen. De är Modeller respektive Presentationer, eller
Presentationsmodeller man även säger. När du i Vikingen öppnar
"analytikern" och väljer Modeller och anger att köra modellen
Kursdiagram, så pekar du faktiskt på en presentationsmodell.
Du kan välja RSI-diagram, Bollingerband eller Multimodell eller
någon av alla de andra modellerna beroende på vad du vill göra.
Analysera, hitta köpkandidater eller säljkandidater. Beräkna
signallistor eller nyckeltal. Allt detta görs genom att peka på
rätt Presentationsmodell. Presentationsmodellens namn anger för
användaren tex vad modellen gör eller vem som har skrivit
modellen. Presentationsmodellen kan därför sägas vara
användarens handtag mellan sig själv och FutureLook.
Utöver sin funktion som "interface" innehåller
Presentationsmodellen även uppgifter om hur diagrammet eller
tabellen ser ut samt vilka inställningar användaren kan göra som
tex ändra tidsintervall, färger eller byta till logaritmisk
skala.
En Presentationsmodell "hämtar sin data" från en modell. Denna
modell hanterar hämtning av data och beräkning.
Ett exempel på en enkel modell kan vara att modellen hämtar ett
värdepappers sista kurs för alla dagar och lämnar dessa som
utdata.
Ofta har man samma namn på modellen och presentationen. Men om
man vill kan man ha flera presentationer som hämtar sin data
från en och samma modell. Detta är bra om man vill ha speciella
utseenden på sina diagram eller tabeller.

Referensmanual för Viking FutureLook™

© 1997-1999 Delphi Economics Sida 3

Man kan tänka sig en modell som har 10 olika utdata. Man bygger
5 olika presentationsmodeller och i varje av dessa visas endast
två utdata per modell. På detta sätt har användaren erhållit 5
unika modeller.
Man kan även tänka sig att en modell har 2 utdata. Man bygger 5
olika presentationsmodeller med olika färg, graftyper,
tidsintervall etc. Varje modell belyser en analytisk aspekt av
den beräknade utdatan.
Modellen kan vara mycket enkel eller mycket komplex. En enkel
modell hämtar tex ett värdepappers börskurs för alla dagar,
beräknar två medelvärden och lämnar kursen och två medelvärden
som utdata. En komplex modell kan utföra lopar och villkor som
baseras på kurs och fundamentaldata för flera aktier och index.
Resultatet kan manipulera diagrammet och rita linjer med olika
färg och sätta in olika texter beroende på vad resultatet av
beräkningarna blir.

Prisdata
Funddata

Objektslistor

Presentations Editorn

Modell Editorn
Vikingen

Grafik
Tabeller

Vinsgeneratiorn
Optimering /
parametrar

Referensmanual för Viking FutureLook™

© 1997-1999 Delphi Economics Sida 4

Dokumentation och manualer
Det finns en omfattande dokumentation att tillgå för att komma igång
eller hitta hjälp om FutureLook. Under betatestfasen finns ingen
onlinehjälp, men den kommer sedan. Den dokumentation som vi i detta skede
publicerar finns samlade i denna fil. Nedan ser du förteckning över de
olika delarna.
Vi är mycket tacksamma för alla typer av synpunkter och förslag till
förbättringar.

Dokumentnamn wordfil version Kommentar

FutureLook översikt 1 FutureLook.doc beta990514
Detta dokument. Översikt över FutureLook och
all dokumentation

Starthjälp 2 FL Starthjälp.doc beta990514
Översiktligt dokument som beskriver hur man
konstruerar modeller och använder dessa,

Användarmanual Presentationseditorn 4 FL Presentationskotroll.DOC beta990514
Programmanual för presentationseditorn. Hur
man öppnar, sparar och kör presentationer.

Användarmanual Funktionseditorn 3 FL Funktionskontroll.DOC beta990514
Programmanual för funktionseditorn. Hur man
öppnar, sparar och kör funktioner.

FutureLook Referensmanual 5 FL Referensmanual.doc beta990514
Beskriver funktionerna som finns i std lib.
Tolkningshjälp och en del modellexempel.

Standardfunktioner 6 FL Standardfunktioner.doc beta990514
Beskriver ingående hur en modell är uppbyggd,
vektorer, syntax mm.

Fundamental library, FD.
Skall beskriva specifika funktioner och saker att
tänka på då man bygger fundamentalmodeller.
? Bilaga Fundamental shortname
? Bilaga Countrycodes
? Bilaga Sectorcodes

EHModspråk 22,20,18,16

Version 981209
Version 990412

Modeller och hur de skapas med
hjälp av FUTURE LOOK.

1 Vad skiljer en modellpresentation från en
modell?

Vi börjar med att göra klart skillnaden mellan modell och
modellpresentation.
Skillnaden mellan en modell och modellpresentation kan liknas
vid skillnaden mellan en datorns hårddisk och dess bildskärm.
För att du skall kunna få fram något på skärmen så måste det
finnas ett program. Utan skärm så ser du ingenting av vad
programmet gör.
Vikingens program består schematiskt av två delar, den ena
svarar mot hårddisken, den andra mot bildskärmen.
Hårddiskdelen gör beräkningarna, bildskärmsdelen gör att något
kommer fram på skärmen. Vi som gör Vikingen kallar
beräkningsdelen för modellen (funktionen) och den andra delen av
programmet för modellpresentationen. Modellen (funktionen) kan
bestå av en eller flera delmodeller (funktioner) varav några är
”svarta” lådor, färdiga byggelement skapade av våra systemmän i
t.ex. C++, andra sådana som du själv konstru erar i Future Look.
Modellen gör, när den körs, beräkningarna och
modellpresentationen skapar vad du ser på bildskärmen, diagram,
tabeller och text.
Genom att vi har skapat en boskillnad mellan modell och
modellpresentation har vi öppnat möjligheterna att ha flera
olika modellpresentationer till en och samma modell.

1 Allmänt om modeller
När vi i fortsättningen talar om modeller så använder vi
modeller som beteckning på de funktioner, som används i
ekonomiska sammanhang.

Starthjälp för Viking FutureLook™

© 1997-1999 Delphi Economics Sida 2

Modellerna är utgångspunkten vid skapandet av
modellpresentationerna.
Varje modell, funktion, har ett unikt namn och är placerade i
ett unikt bibliotek. Vill du anropa en viss funktion, t.ex.
funktionen ”MAVN” som ligger i biblioteket ” Std” och ge den
värdet ”Medelvärde” så skr iver du ”Medelvärde :=
std.MAVN(main.close, medelvärdeslängd);”
Symbolen ”:=” betyder tilldelning. Funktionen Medelvärde ovan
betyder t.ex. skapa en tidsserie som innehåller ett
medelvärdeslängd långt mede lvärde för slutkursen.
Du måste då veta att MAVN kräver två argument, det ena
main.close måste vara en tidsserie, t.ex. av slutkurser, och den
andra ett heltal, längden på medelvärdet.
Om du skulle vilja köra funktionen Medelvärde, så kommer den om
du inte begär annat att köras på det aktuella objektet eller den
aktuella listan, om du inte väljer annat.
Vi kommer i fortsättningen att använda modell som beteckning
även på modellpresentation när risken för förväxling är låg.
Vi delar in modellpresentationerna i analys - och signalmodeller
med avseende på vad de används till.
Analysmodeller är modeller avsedda att resultera i
signalmodeller.
Genom att använda analysmodeller kan vi få en uppfattning om
lämpligheten att använda modellen som en signalmodell.
För att avgöra om en analysmodell skall kunna användas som
signalmodell så måste den innehålla möjligheter att avgöra om de
avkastningskrav mätt som resultat och risk, som du fordrar,
uppfyllts av modellen ifråga, när den testas på historiska
tidsperioder.
När du gör testningarna är det viktigt att testningarna görs på
i förhållande till eventuella parameteroptimeringar senare
perioder än den för optimeringen.
Först av allt, kom ihåg att allt som datorn skall utföra, det
måste den också få klara instruktioner om hur det skall göras.
De flesta instruktioner, som behövs för att en
modellpresentation skall kunna köras är redan i nbyggda i
Vikingen programmen.
De specifika instruktioner som måste finnas för att det skall
vara möjligt köra en modellpresentation är;
de indata, parametrar, och de övriga variabler, som skall gå i
modellen samt de beräkningar som skall utföras på dessa
parametrar, d.v.s. själva m odellen
de delar av modellen, utdata, som skall kunna ingå i
modellpresentationen

Starthjälp för Viking FutureLook™

© 1997-1999 Delphi Economics Sida 3

och slutligen de objekt, den tidsperiod och den periodlängd som
presentationen skall köras på.
De instruktioner som räknats upp under a) och b) ovan ingår i
modellen och för instruktionerna under c) finns i Vikingen av
Delphi satta standardvärden som sätts in när du kör en
modellpresentation, om du inte lämnar andra instruktioner i
samband med körningen. Det är vi ktigt att du ändrar dessa värden
till rimliga värden i samband med att du göra presentationerna
för modellen.
De ”generella” Indata, som modellen behöver, t.ex. kurser och
volymer, och de ”generella” Utdata, som modellen skall generera,
anger du, när du skapar mode llen.
I modellpresentationen väljer du vilka av de tillgängliga
Utdata, som skall ingå i pr esentationen av modellen, d.v.s. i
graferna och i tabellen.
Ändringar av tidsperiod, som du vill köra modellpresentationen,
och ändringar av t.ex. längden på medelvärden etc kan du göra i
samband med körningen i modellinstäl lningar.

2 Hur konstrueras modeller?
Vi skall här gå igenom hur du konstruerar en modell.
Ett första råd till dig är att du innan du skriver helt egna
modeller först kopierar in en redan gjord modell och genom att
ändra i den genom en trial and error process successivt lär dig
hur modellspråket fungerar.
När du har tänkt till och har en verbal formulering av hur din
modell skall se ut, så kan det vara lämpligt att börja med att
dels ange vilka indata, som skall ingå i en modell, dels ange,
(deklarera, ge datorn möjlighet identifiera) de storheter, som
du skall använda dig av inne i modellen. Storheter som kan vara
integers, t.ex. längden på ett mede lvärde, eller vektorer,
tidsserier, t.ex. en vektor (tidsserie) med mede lvärden.
Du måste ange vad de består av och hur de mäts. Vi talar om
datatyper. I Vikingen har vi följande datatyper; instrument
(kurser, volymer), time, set (listor), sträng (text), heltal,
reella tal och logiska (boolska) värden (sann och falsk).
Instrument är detsamma som objekt och innehåller för aktier
följande värden högsta, lägsta, första och sista kurs under
perioden samt volym och efteranmäld volym när periodlängderna är
dag eller mer.
Sträng, eng. string, är en följd av tecken, bokstäver, siffror
och symboler. Strängar använder du, när du vill lägga in text i
diagrammen.
Set är ett antal objekt, som är representerade av vikingkoder.
Set använder du, när du vill göra modeller där det läggs villkor
på flera objekt.

Starthjälp för Viking FutureLook™

© 1997-1999 Delphi Economics Sida 4

För tid, heltal, reella tal och logiska värden måste du ange
datatypen, time, integer, integervector, real, realvector,
boolean och booleanvector.
Som regel ingår kursdata som Indata. Indata kan vara på fyra
olika format, intradaydata, dagsdata, veckodata eller
månadsdata.
Du skall strax få ett exempel på en modell, men först några
allmänna regler.
När du har skapat en modell och skall kompilera, spara undan
den, så struntar kompilatorn i mellanslag, tabbar och radavslut
så länge som de inte finns inne i reserverade ord eller
identifierare (funktionsnamn).
Stora och små bokstäver betraktas som synonymer.
Identifierare får inte börja med en siffra.
Main.close[10] betyder det tionde elementet i vektorn
main.close.
Du får här ett exempel på hur en färdig modell kan se ut.

(*Detta är en RSI modell som ger köpsignaler då RSI värdet dels just passerat en botten, dels
har ett värde som inte överstiger ”ÖvreGränsFörKöp”. Säljsignaler ges då RSI värdet juste
passerat en topp på en nivå inte under ”NedreGränsFörSälj.*)

par (main : instrument;
PerioderRSI : integer;
ÖvreGränsFörKöp, NedreGränsFörSälj : real;
out RSI : realvector;
out Köpsignal, Säljsignal, Signal : integervector) : realvektor;
out FilledClose, R1: realvector;
Buy, Sell : booleanvector;

begin
FilledClose := Fill(main.close);
RSI := RSI(FilledClose,PerioderRSI);
R1 := SHIFT(RSI,1);
BUY := (BOTD(RSI,1) < 1.5) AND (R1 <= ÖvreGränsFörKöp);
SELL := (TOPD(RSI,1) < 1.5) AND (R1 >= NedreGränsFörSälj);
Köpsignal := ONE(BUY);
Säljsignal := ONE(SELL);
Signal := Köpsignal - Säljsignal;
return Signal;

end;

Allra först kommer ett textstycke inneslutet mellan (* och *).
Första raden, som börjar med ”par” kallas funktionshuvud.
I ”par” finns inom parentes angivet, deklarerat, de parametrar,
main m.fl., som ingår som indata och som används i modellen och
dessutom de datatyper, instrument m.fl. som par ametrarna består
av.
Datatyperna är, som redan nämnts, instrument, time, set, string,
integer, real och boolean samt vektorna timevector,
integervector, realvector och booleanvector.
Anger du datatypen till integer innebär det att parametern är
ett heltal.

Starthjälp för Viking FutureLook™

© 1997-1999 Delphi Economics Sida 5

Anger du i stället realvector, integervector eller booleanvector
innebär det att parametern är en vektor av tal respektive av
True, False.
I Vikingen är som regel integervector, realvector och
booleanvector tidsvektorer med en ordningsföljd grundad på
tidsperioder som vecka, dag eller intraday perioder.
I modellen i exemplet ovan finns det efter : angivet den datatyp
som de införda parametrarna har. Det är en nödvändig instruktion
för att datorn skall kunna hantera parametrarna ifråga.
Du måste således vara noga med att i modellerna deklarera
samtliga byggstenars parametrar.
Som du ser i exemplet ovan så föregås några tidsserier
(realvector och booleanvector ovan) av ” out”.
Genom att i ”par” börja raderna med ” out” deklarerar du att du
vill ha möjlighet att när du gör modellpresentationerna ange att
de skall vara med i presentationen av modellen. De blir Utdata.
Observera att den här möjligheten föreligger bara i ”par” och
inte för de i ”var” deklar erade storheterna.
Genom att deklarera datatyperna integer, real, boolean och time
i ”par” så får du möjlighet
att i modellen gå in och ge storheten ifråga ett konstant värde
i samband med att du skapar en modellpresentation till modellen
ge storheten ifråga ett konstant värde.
i fallet b kan du välja att ta med storheten i
modellinställningar och på så sätt ge användaren möjlighet att
ändra värdet.
Om en storhet av typen integer eller real skall kunna optimeras
måste den tas med under ”par” .
I modellpresentationerna av modellen kommer du sedan att ha
möjlighet att välja ut de utparametrar, som du vill ha med i
presentationerna av modellen.
För de parametrar under ”var” ovan som är deklarerade som real
respektive integer kommer, som redan påpekats, det i samband med
körningar vara möjligt att genom att gå in i modellinställnigar
ändra värdena på dessa parametrar.
Biblioteket std innehåller ett antal förprogrammerade,
hårdlödda, matematiska, statistiska och logiska funktioner samt
ekonomiska funktioner (modeller).
Du kan använda samma namn , när du deklarerar namnet på
tidsserier som skall användas i modellen, som de funktionsnamn
(modellnamn), som ingår i biblioteket, std, om du iakttar
nedanstående.
Om du skapat en egen funktion, t.ex. MAVN, och längre ner i den
modell, där du skapat den, vill använda standardbibliotekets
MAVN funktion, så måste du skriva std.MAVN.

Starthjälp för Viking FutureLook™

© 1997-1999 Delphi Economics Sida 6

Likaså, om du i ett biblitotek, t.ex. ”Mitt bibliotek”, skapat
en funktion med samma namn som en funktion i
standardbiblioteket, std, och därefter växlar till ett annat
bibliotek och där skapar en modell där du vill använda din
”egen” funktion, så måste ange detta genom att före
funktionsnamnet ange dess bibliotek.
Skulle du inte ange något bibliteksnamn före funktionen ifråga,
så kommer programmet att använda sig av standardbibliotekets
funktion.
Varje instruktion skall avslutas med ett semikolon, ”;”.
Ingenting hindrar att du skriver fler än en instruktion på samma
rad, så länge som du avslutar varje instruktion med semikolon.

3 Hur konstrueras modeller? Ett exempel.
En modells struktur är följande.
Först en textdel som omgärdas av (* *). T.ex.

(*Modell RSI

version 981207

Detta är en RSI modell, som ger köpsignaler när en stigande RSI kurva har ett RSI värde som
understiger UndreRSIgräns och säljsignaler när en fallande RSI kurva har ett värde som
överstiger ÖvreRSIgräns.*)

En deklaration av indata och parametrar. T.ex.
par (Main : instrument;
RSIlängd ; integer;
ÖvreRSIgräns : real;
UndreRSIgräns : real;
out FilledClose, RSIvärde : realvector;
out BUY, SELL : booleanvector,
out Signal : integervector): integervector;

En deklaration av parametrar som inte bedöms ska ingå i någon
modellpresentation av modellen. T.ex.

varRSIvärdeIGår : realvector;
b1, b2 : booleanvector;

Slutligen kärnan, ”själva” modellen. Den skall inledas med Begin
och avslutas med end. Kom ihåg att varje instruktion skall
avslutas med semikolon. Här ett exempel.

Starthjälp för Viking FutureLook™

© 1997-1999 Delphi Economics Sida 7

Begin

FilledClose : b1 := FILL(Main.Close); (*sätter in föregående senastbetald kurs de
gånger som betalkurs saknas.*)
RSIvärde := RSI1(FilledClose, RSIlängd); (*i modellpresentationen ersätter du det dummy
värde som är a ngivet där med t.ex. 14.*)
RSIvärdeIGår := SHIFT(RSIvärde, 1); (*RSIvärdeIGår kommer att ha gårdagens
RSIvärden som sina.*)
b1 := RSIvärde < RSIvärdeIGår;
b2 := RSIvärde > RSIvärdeIGår;
b3 := RSIvärde < UndreRSIgräns;
b4 := RSIgärns > ÖvreRSIgräns;
BUY := FILTERBUY(b1 AND b3, b2 AND b4);
SELL := FILTERSELL(b1 AND b3, b2 AND b4);
Signal := ONE(BUY) - ONE(SELL);
return Signal; (*Om modellen döpts till RSImodell så ko mmer RSIsignal ha värdet Signal.*)

end;

Än en gång, de parametrar som kan användas i
presentationseditorn är de som du under ”par” har deklarerat som
”out” storheter.
Tidsserier och konstanter som du avser enbart använda för
mellanberäkningar kan du deklarera under ”var”.
Under ”var” deklarerade tidsserier kan du inte utan vidare få
med i en modellpresentations diagram eller tabell och under
”var” deklarerade konstanter kan du inte påverka i en
modellpresentation .
Om du studerar exemplet ovan så ser du, att vi deklarerat t.ex.
FilledClose under ”var”.
För att få med t.ex. FilledClose, här en temporär (lokal)
storhet, som returparametrar (parametrar som kan ingå i en
modellpresentation) måste du använda dig av instruktionen
”return”.

4 Vad händer när en modell körs?
För ordningens skull, det är en modell som körs men det är en
modellpresentation, som du väljer från någon av kategorierna i
Vikingen.
De indata, som ingår i modellen laddas in. Tidsserierna är
indexerade från 0 och framåt i tiden.
Den första instruktionen körs. Avser den första instruktionen
att skapa en vektor, så kommer den vektorn att skapas.
Därefter körs instruktion för instruktion.
Resultaten av instruktionerna kan användas som byggstenar i
senare givna instruktioner.
När alla instruktioner är utförda presenteras resultaten av
körningen i enlighet med de instruktioner, som
modellpresentationen innehåller.

5 Beräkningsordningen för ett uttryck

Starthjälp för Viking FutureLook™

© 1997-1999 Delphi Economics Sida 8

När du skriver en modell, som innehåller operatorer (not, *, +,
> m.fl.) så måste du veta i vilken ordning som operationerna
utförs.
Så här är beräkningsordningen i Vikingens modellspråk.

Not
*, /, and
+, -, or
=, <, >, <=, >=

Risken för fel undviker du genom flitigt bruk av paranteser.
Operatorer med samma företräde (precedens) utförs i ett uttryck
från vänster till höger. T.ex. 5 + 4 - 6 + 3 beräknas först 9 -
6 + 3 och därefter 3 + 3 och slutligen 6.
Skulle det förekomma något odefinierat tal (operand) i ett
uttryck, så blir resultatet odefinierat.
Självklart ger försök att dividera med 0 att resultatet blir
odefinierat. Du kan testa det genom att skriva undef(resultat).
Om minst en av operanderna är en vektor, så kommer operationerna
att utföras element för element i vektorn (vektorerna). Antag
t.ex. att vektorn 3, 4, 8 skall multipliceras med 4 så blir
resultatet en ny vektor 12, 16, 32.

6 Ändra i en modell
Du kan ändra i de modeller, som ligger i biblioteken
DelphiStandard och DelphiSignaler samt självklart i de modeller,
som du själv skapat.
De specialmodeller, som ligger i övriga Delphi bibliotek
innehåller information, som vi inte lämnar ut.
När du vill ändra i en av de ”tillåtna” modellerna, så gör du på
följande sätt.
Du klickar först på ”visa”, därefter på ”funktionskontroll”, och
väljer det bibliotek, som modellen ligger i.
Därefter markerar du den modell du vill ändra och därefter
klickar du på ”Editera” efter att ha kontrollerat att rutan
efter ”Editera”, (den med ”F/P”) är markerad. Alternativt kan du
dubbelklicka på den modell, som du vill ändra på.
När du gjort dina ändringar i den gamla modellen så sparar du
undan den ändrade modellen under ett nytt namn.
När du sedan gör en modellpresentation, så måste du tänka på att
om du ändrat i modellens ”par” deklaration, så kan du som regel
inte använda de gamla modellpresentationen, om det finns en
sådan, utan du är tvungen att skapa en ny sådan.
Ett bra sätt att komma igång med modellskapandet är att ta en
redan befintlig modell som utgångspunkt.

Starthjälp för Viking FutureLook™

© 1997-1999 Delphi Economics Sida 9

7 Skapa en modell
7.2 Skapa bibliotek

Du har möjligt att dela upp dina modeller genom att lägga dem i
olika bibliotek med vissa undantag. De specialmodeller, som
Delphi producerat läggs i ”fasta” bibliotek, som Delphi skapat.
Innan du börjar med att skapa en ny modell så skall du ha skapat
det bibliotek, t.ex. biblioteket ”Mina egna”, där du vill ha den
nya modellen lagrad.
Skapar ett nytt bilbliotek gör du genom att i funktionseditorn
först klicka på ”ny” efter att först ha sett till att ”F/B” för
”Ny” inte är markerad och därefter ange namnet på det nya
biblioteket.

7.3 Första steget
När du skall skapa en ny modell börjar du med att markera
”Visa”, väljer ”funktionseditor” och därefter väljer du det
bibliotek, som den nya modellen skall ligga i.
Därefter väljer du ”ny modell” och ger modellen ett namn. I
nästa steg klickar du på ” Editera” och nu är det färdigt att
skapa modellen.

7.4 Deklarera inparametrar och variabler
Du börjar med funktionshuvudet. Du anger då först under par de
parametrar och de variabler, som du vet skall ingå i modellen,
och som inte har karaktären av . Du kan namnge dem med namn, som
du själv väljer på lämpligt sätt. Du kan, om du vill, använda å,
ä och ö i namnen.
Alla parametrar och variabler, som skall ingå i modellen måste
vara deklarerade under ”par” eller ”var”.
Det objekt, som modellen skall grundas på, anges som obj :
instrument.
Upptäcker du under skapandet av modellen att du behöver
ytterligare parametrar eller variabler så måste du ange dem i
”par” respektive ”var” ovan.
De parametrar och variabler med undantag av de instrument, som
skall ingår i modellen, skall om du vill ha tillgång till dem
vid modellpresentationerna deklareras (anges) under ”par” och de
måste dessutom föregås av ”var”. Du kommer strax här nedan få
exempel på hur du skall göra.
Temporära (lokala) variabler, som du räknar med att inte
redovisa i modellpresentationerna deklarerar du under ”var”.

Starthjälp för Viking FutureLook™

© 1997-1999 Delphi Economics Sida 10

Om du vill kunna dels ange ett värde t.ex. ett gränsvärde i
Stochastics som en parameter och också kunna rita gränslinjen i
diagram så gör du så här. Skapa under ”par” en real, t.ex.
gräns, och en realvector, t.ex. gränslinje, och tilldela i
modellkärnan realvektorn gränslinje värdet gräns, som i det här
fallet är ett konstant värde.

Du skriver i modellkärnan: gränslinje := gräns; Du kan då
i modellpresentationerna ha gräns i modellinställningarna och
där välja värdet på gräns och i ett pane ha gränslinje som en
rät linje med det valda värdet på gräns.

7.5 Modelluppbyggnaden
Mellan ”begin” och ”end” ger du de instruktioner som behövs för
att i modellspråket operationalisera din ”verbala” modell, dina
hypoteser.
Modellen innehåller i stort följande;

//text innehållande namn på modellen, modellbeskrivning etc.
par();
var
begin

ett antal instruktioner där bl.a. ett antal vektorer tilldelas värden genom att till höger om ”:=”
ange hur dessa värden skall beräknas

end;

7.6 Funktionsbiblioteket
För att underlätta modellskapandet kan du använda dig av det
funktionsbibliotek med en mängd färdiga funktioner, som du
hittar i funktionseditorn under biblioteket Delphi. Utöver
funktionsbiblioteket med Delphifunktioner så kan du skapa ett
eller flera egna bibliotek där du kan lägga in funktioner och
modeller, som du själv skapar.
Exempel på for loop
En ”for loop”, som skall addera ett tal, hp1, till en invektor i
form av en tidsserie från och med invektorn nr 10 till och med
invektorn nr 20 ser ut så här;
Vi börjar med att kontrollera att vi ligger i rätt bibliotek,
t.ex. ett som vi döpt till funktioner. Sedan fortsätter vi på
samma sätt som vid skapandet av en modell.

Starthjälp för Viking FutureLook™

© 1997-1999 Delphi Economics Sida 11

par (invektor: realvector, hp1: integer) : realvector;

var i : integer;

begin

for i := 10 to 20 do
invektor[i] = invektor[i] + hp1;

end;

return invektor;
end;

För att kunna köra funktionen måste det finnas en invektor med
minst 20 värden, som kan laddas in som indata. Vidare förutsätts
det att hp1 har ett värde, ett heltal. Värdet på alla indata av
typen real och integer är som standard satta till 6.
I samband med skapandet av en modellpresentation kan du ändra
det värdet och om du i exemplet ovan hade deklarerat hp1 som en
variabel så hade du kunnat få med hp1 i modellinställningar. Då
hade funktionshuvudet haft följande utseende.

par (invektor: realvector, var hp1 : integer) : realvector;

7.7 Skapa en egen funktion
Låt oss fortsätta med ett exempel där vi skriver en funktion som
skapar ett medelvärde. Vi kallar funktionen för MAV. MAV =
Moving aveage.

Par (invektor : realvector, mavlength : integer) : realvector;

var i,j : integer; summa : real; utvektor : realvector;

begin
for i := mavlength - 1 to len(invektor) - 1 do

summa := 0;
for j := i - mavlength + 1 to i do

summa := summa + invektor[j];
end;

utvektor[i] := summa/ mavlength;
end;
return utvektor;

end;

Vad händer, när du kör funktionen?
Antag att vi i en modellpresentation givit mavlength värdet 10
och att invektorn består av 20 element indexerade från 0 till
19.
Det första värdet för styrvariabeln i, blir 9. Summa sätts till
noll.
Därefter sker följande.

Starthjälp för Viking FutureLook™

© 1997-1999 Delphi Economics Sida 12

Med början på värdet 0 för styrvariablen j, 10 - 9 + 1, sätts
summa till värdet av invector[0], därefter sätts för
styrvariabelvärdet 1 summa till värdet av invector[0] och
invector[1] o.s.v. fram t.o.m. styrvariabe lvärdet 9 då
summavärdet är summan av invektorns första 10 element.
Därefter beräknas värdet på utvektor[9] som summavärdet av
invektorns första 10 element, Summa dividerat med 10, mavlength.
Nu sätts styrvariablen i till värdet 10, varefter summa sätts
till noll.
Med början på värdet 1 för styrvariablen j, 11 - 9 + 1, sätts
summa till värdet av invector[1], därefter sätts för
styrvariabelvärdet 2 summa till värdet av invector[1] och
invector[2] o.s.v. fram t.o.m. styrvariabe lvärdet 10 då
summavärdet är summan av invektorns element 1 t.o.m 11.
Utvektor[10]:s värde blir nu summavärdet av invektorns element 1
t.o.m 11 dividerat med 10.
Sedan börjas en ny omgång med styrvariabeln i satt till 11.
Detta kommer att fortsätta t.o.m att i fått värdet 19. (Vi antog
att det fanns 20 element i invektorn.)
Om du fått klart för dig hur loopar fungerar, så kan du hoppas
över följande liknelse och gå vidare till nästa avsnitt.
På en ”gammeldags” klocka finns ofta både en timvisare, en
minutvisare och en sekundvisare.
En enkel loop kan då uppfattas som en instruktion att för varje
timme från 0 till 12 gå ett steg framåt.
En dubbel loop, som i exemplet ovan om medelvärde, kan då
uppfattas som en instruktion till klockan att för varje minut,
från noll till 60 gå ett steg framåt och att göra det för varje
timme från 0 till 12.
Om du nu tar en titt på mav modellen ovan, så har du där en
instruktion ”summa := 0”. Motsvarigheten i vårt klockexempel
blir att för varje ny timme sätta antalet minuter till 0.

7.8 Anropa en egen funktion
Du kan nu använda MAV funktionen ovan för att t.ex. skapa ett
MAV på ett MAV.

Par (obj : instrument) : realvector;

var

begin

return MAV(MAV(obj.close, 5),7);
end;

Starthjälp för Viking FutureLook™

© 1997-1999 Delphi Economics Sida 13

Om det skulle finnas en Delphi funktion med namnet MAVN så
kommer den funktionen, om du skapar en ny modell i samma
bibliotek och i den anropar MAVN inte att anropas utan i stället
den av dig skapade.
Vill du att Delphifunktion MAVN skall anropas, så skriver du
std.MAVN, eftersom Delphis standardfunktioner ligger i
biblioteket std.

7.8.1 Åtkomst av invektorer för ett objekt och för en ordning
Kurser och volymer för aktierna (instrumenten) i din databas
kommer du åt genom att efter objekt ange kurs eller volym, t.ex.
objekt.close, objekt.high, objekt.vol etc.
Du kan också använda dig av kurser och volymer för en ordning av
instrument. Antag att du vill summera slutkurserna för en
ordning, topp16. Då blir modellen för detta följande;

par (topp16 : set) : realvector;

var r0 : realvector;

begin
r0 := 0;

for i := 0 to len(top16) -1 do
r0 := r0 + GetClose(topp16[i], ”close”);
end;

return r0;
end;

Den första instruktionen här, ”r0 := 0;” gör att vektorn r0 i
”begynnelsen” är rensad från eventuellt skräp.

7.9 Åtkomst av tidsskalan
Hur du sätter en tidsvariabel till ett visst datum eller till
ett visst datum och klockslag.
Det gör du med funktionen time.
Med funktionen TimeOfIndex kan du ta fram tidpunkten för ett
visst index.
Med funktionen IndexOfTime kan du ta fram index för en viss
tidpunkt.
Med funktion TimeUnit kan du bestämma vilken tidsenhet, som
skall gälla.
Om du vill låsa ett villkor till senaste tidsperiod, dag, vecka
etc, så använder du dig av Now. Skriver du t.ex. dagenskurs :=
main.close[Now]; så kommer dagenskurs att vara det sista värdet
i vektorn av slutkurser för dagsdata.
Du kan också lägga till eller dra ifrån ett antal tidsperioder
från en given tidpunkt. Vill du t.ex. gå tillbaka 1 kvartal från
idag så skriver du

Starthjälp för Viking FutureLook™

© 1997-1999 Delphi Economics Sida 14

tidpunkt := TimeOfIndex(timevec, now);
tidpunkt := NextQuarter(tidpunkt, -1);

I referensmanulen finns mer information om vilka möjligheter du
har att ta reda på tidpunkter och index samt ändra dessa.

8 Vad kan du göra ytterligare i
modellspråket?

I referensmanualen kan du hitta en mängd uppgifter om vad du kan
göra och också information om hur du skall göra det.
Du rekommenderas därför att studera referensmanualen noga. Börja
med att skumma igenom den för att vid förnyad läsning fördjupa
dig i delar av den till dess du har en klar uppfattning om vad
som kan göras.
Skulle du då finna, att modellspråket inte gör det möjligt för
dig att operationalisera de hypoteser om ekonomiska förhållande,
som du vill testa, ta då kontakt med oss.
Slutligen ger vi dig nedan ytterligare ett exempel på en modell.

9 Ett exempel på en modell
Antag att du har den uppfattningen att RSI och Parabolic
tillsammans kan ge en bra prognos av den kommande
kursutvecklingen. Du tror att en bra köpsignal fås av endera RSI
eller Parabolic och en bra säljsi gnal först när både RSI och
Parabolic signalerar för sälj.

// MODELL EXEMPEL © Delphi Economics AB/EH
//
// Köp görs om endera RSI eller Parabolic ger köpsignal. Sälj görs då
// både RSI och Parabolic ger säljsignaler.
//
par(Main : Instrument; PerioderRSI, PerioderMAVförRSI : Integer; MaxförParabolic,
TillväxtförParabolic, ÖvreGränsförRSIköp, NedreGränsFöreSälj: real; var(RSI, MAVförRSI,
Parabolic: realvector; Buy, Sell, Short, Cover : booleanvector);

var FilledClose,
begin

FilledClose := FILL(obj.close);
RSI := RSI(FilledClose, perioderRSI);
MAVförRSI := MAV(RSI, PerioderMAVförRSI;
PAR:=PARAB(obj.close,MaxförParabolic,TillväxtförParbolic);
Buy := ((BOTD(RSI,1) < 1.5) AND (RSI < ÖvreGränsförKöp)) OR (PAR <

FilledClose);
Sell := (TOPD(RSI,1) < 1.5) AND (PAR > FilledClose);
Short := Sell;
Cover := Buy;
return FilledClose;

end;

Kom ihåg följande;

Starthjälp för Viking FutureLook™

© 1997-1999 Delphi Economics Sida 15

”//” används för att lägga in kommentarer på en enskild rad i
modellen och om du vill lägga in en kommentar som sträcker sig
över flera rader så använder du (*och *) för att påbörja och
avslutaen kommentar över flera rader
i funktionshuvudet efter par anger du de indata och utdata som
skall ingå i modellen
samtliga storheter i modellen som inte är kända av
programspråket måste vara definierade i ”par” respektive ”var”
de parametrar och variabler deklarerade under ”par” som skall
kunna användas i modellpresentationer måste föregås av ” out”
de variabler, tidsserier, som enbart används för
mellanberäkningar deklareras under ”var”, i vårt exempel ovan
”FilledClose”.

Manual Funktionskontroll

© Delphi Economics 1998 Sida 1

Funktionskontroll:

För att skapa en funktion välj Moduler | Funktionskontroll (se Figur 1).

Figur 1

Figur 2

Först öppnas Funktionskontrollsfönstret. Markera den funktion eller de funktioner du vill
ändra. Du kan markera flera funktioner genom att hålla ctrl-tangenten nedtryckt samtidigt som
du klickar på de funktioner du vill välja.

Om du vill kompilera en funktion, så klickar du på Kompilera. Om funktionen du valt
innehåller fel, får du upp en dialogruta med kompileringsfel. Varje fel står på en egen rad. Du
kan välja att dubbelklicka på en av raderna och får då upp Funktionseditorn där du kan rätta
till felet. Det specifika fel du valde att klicka på kommer att vara markerat.

Funktioner

Bibliotek

F/P = funktion/presentation. Ej markerad ruta innebär
att Presentationseditorn (se Figur 5) kommer att
öppnas om du klickar på Redigera-knappen.
Markerad ruta innebär att Funktionseditorn (se Figur
3) kommer att öppnas.

F/B = funktion/bibliotek. Ej markerad ruta innebär att
du kan skapa ett nytt bibliotek, genom att klicka på
Ny… -knappen. Markerad ruta innebär att du kan
skapa en ny funktion.

F/B = funktion/bibliotek. Ej markerad ruta innebär att
du kan byta namn på ett bibliotek om du klickar på
Byt namn… -knappen.. Markerad ruta innebär att du
kan byta namn på en funktion.

Visa innehåll öppnar en dialogruta där
du kan se källkoden och eventuell
hjälptext (se Figur 4).

Kör - skapar diagram
med aktuellt objekt.

Manual Funktionskontroll

© Delphi Economics 1998 Sida 2

Om funktionen du valt inte innehåller fel kommer inget meddelande att visas.

Vill du flytta en funktion till ett nytt bibliotek, så markerar du funktionen och trycker på
Flytta-knappen. Du kommer att få ange destinations bibliotek i en dialogruta innan funktionen
flyttas.

Ta bort-knappen fungerar så att den markerade funktionen tas bort. När alla funktioner i ett
bibliotek tagits bort kan du välja Ta bort ytterligare en gång och då tas biblioteket bort.
Du kommer att få bekräfta att du vill ta bort funktionen/biblioteket.

Redigera en funktion

Figur 3

Du kan välja att redigera en funktion genom att klicka på Redigera-knappen när rutan F/B är
markerad.
De standardfunktioner som ingår i Std-biblioteket går inte att redigera. De är skrivskyddade.
Egna modeller går att redigera i dialogrutan ovan.
Om du valt att skapa en ny funktion, så kommer det att finnas en funktionsmall inlagd. Du
fyller sedan på med dina specifika variabler, vektorer mm.
Förutom med de funktions-knappar som syns längst ner i fönstret kan du redigera funktionen
med hjälp av de funktioner som förekommer på snabbmenyn. Högerklicka när pekaren är inom
funktionsfönstret. Du kan här välja att ändra Font, Kopiera, Sparar som… mm. De alternativ
som finns på Redigera-menyn i huvudmenyn kan också användas.

För att köra funktionen kan du förutom att klicka på knappen Kör, även välja Analysera |
Kör på huvudmenyn.

Sparar den ändrade
funktionen.

Kompilerar den
ändrade funktionen.

Kör den ändrade
funktionen. Visar
diagram.

Öppnar
presentationseditorn.
Se figur 9.

Växlar mellan fönster att
skriva/redigera källkod
och hjälpfil. Se figur 9.

Manual Funktionskontroll

© Delphi Economics 1998 Sida 3

Visa innehåll i en funktion
Om du väljer att markera Visa innehåll i Funktionskontrollfönstret så kommer en dialogruta,
med källkoden i den övre rutan och hjälpfilen i den undre rutan, att visas.

Figur 4

Här kan du se källkoden i den övre rutan och hjälpfilstexten i den undre rutan.
Det här fönstret visas konstant om man markerat rutan i Funktionskontroll. Om du byter
funktion i Funktionskontroll, så kommer fönstret att istället visa den nyvalda funktionen.
I funktioner du själv skapat visas överst ett funktionshuvud (uppräkning av parametrarna).

Figur 5

För mer information om presentationseditorn, se särskild funktionsspec.

Manual Funktionskontroll

© Delphi Economics 1998 Sida 4

Redigera hjälp i Funktionsredigeraren

Figur 6

Funktionsredigeraren övergår från att visa källkoden till att visa funktionens hjälpfil. Du kan
här skriva kommentarer till dina funktioner. Hälpfiler kan endast skrivas för de funktioner du
själv skapat. Standardfunktionerna är skrivskyddade. Funktionens hjälpfil kommer att visas om
du väljer Hjälp genom att trycka F1 när diagrammet eller tabellen som är resultatet av
körningen är aktivt. Om du i Presentationseditorn (se Figur 5) skapar en presentation av din
funktion och i presentationen skapar en hjälpfil, så kommer den att visas i första hand.

Manual Presentationskontroll

© Delphi Economics 1998 Sida 1

Presentationskontroll:

För att ändra presentationen av en modell, väljer du Moduler | Presentationskontroll (Figur
1).

Figur 1

Figur 2

I dialogrutan Presentationskontroll kan du utföra ett flertal olika ändringar på dina
presentationer. I den stora rutan ser du namnen på de presentationer du skapat. Du skapar en
presentation genom att skapa eller öppna en funktion under Moduler | Funktionskontroll och
när du redigerar funktionen, klicka på knappen Presentation (se Figur 1).

För att utforma presentationen klickar du på Redigera, då får du upp
Presentationsredigeraren (se Figur 3).
I listrutan i botten på dialogrutan ser du de olika kategorier som finns att välja på. Du kan
skapa nya kategorier genom att klicka på Ny Kat. och sedan ange namnet i den dialogruta du
får upp. Om du vill byta namn på kategorin, så klicka på Kat. namn och ange namnet i
dialogrutan Ange nytt namn.

Presentation

Öppnar Presentationsredigeraren (se Figur 3).

Öppnar dialogrutan Ange kategori.

Öppnar dialogrutan Ange nytt namn.

Öppnar dialogrutan för verifiering att ta bort.

Öppnar dialogrutan Ange nytt kategorinamn.

Öppnar dialogrutan Ange nytt namn.

Öppnar ett diagram som resultat av körning.

Kategori

Manual Presentationskontroll

© Delphi Economics 1998 Sida 2

Du kan flytta en presentation till en ny kategori genom att markera presentationen och därefter
klicka på Flytta. Ange namnet på den kategori du vill flytta presentationen till.

Byt namn på en presentation genom att markera den och klicka på Namn. I dialogrutan Ange
nytt namn skriver du in namnet.

Ta bort-knappen fungerar så att den först tar bort den presentation som är markerad och när
du tagit bort alla presentationer i en kategori, så tar den bort kategorin.

Figur 3

Högst upp i fönstret ser du titelraden. Den talar om vilken presentation, från vilken kategori
som visas. Därefter följer inom parantes vilken funktion, från vilket bibliotek som ligger till
grund för presentationen.

Under titelraden finns fyra knappar, där kan du välja vilken del i presentationen du vill
förändra:
Anrop - för hur funktionen ska anropas.
Diagram - för hur diagrammen ska utformas.
Tabell - för hur tabellerna ska utformas.
Inställningar - för hur modellinställningarna ska utformas.

I rutan med Funktionsparametrar finns en uppräkning på de parametrar, som ingår i modellen,
t ex längderna på medelvärdena. Kolumnen längst till vänster visar vilken parameterkategori
parametern tillhör. Nästa kolumn visar vilken typ. Tredje kolumnen visar parameterns värde.
Fjärde kolumnen visar variabeln som ger parametern dess värde. Sista kolumnen visar

Ladda en
presentation

Spara en
presentation

För att ändra
parametervärdet

Skapa en Ny
instrumentvariabel

Manual Presentationskontroll

© Delphi Economics 1998 Sida 3

parameternamnet. Om du vill ändra på de angivna parametervärdena så markerar du först den
aktuella parametern, t ex i och klickar därefter på Ändra i rutan Parameter. Alternativt, om
parametern är instrument eller realvector, kan du välja den önskade parametern genom att rulla
fram den i listrutan - Variabel. När du klickat på Ändra får du upp en dialogruta, där du anger
vilket heltalsvärde parametern ska ha. Genom att klicka på 0-knappen, så nollställer du värdet
för den markerade parametern.

Vill du ändra något objekt, t ex om du har något relativobjekt, så markerar du det i rutan med
Objektvariabler. Klicka på Ändra och du får upp objektlistan, där du kan välja ett nytt objekt.
Objektvariabeln HuvObj, som är huvudobjekt, byter alltid värde automatiskt till det aktuella
objektet när man kör presentationen. Det är således ingen mening med att byta värde i
Presentationseditorn på den variabeln. Volvo B är här ett defaultvärde.
Du kan inom den här rutan också skapa nya objektvariabler genom att välja Ny och ange ett
nytt variabelnamn eller ta bort en variabel genom att välja Ta bort.

I Tidsintervall-rutan kan du välja periodlängd, start- och slutperiod, samt antal perioder framåt
i tiden som skall beräknas. Väljer du t ex Vecka och markerar Framåt och sätter antal till 5, så
kommer programmet att beräkna fem veckor framåt. Om du väljer Intraday som Typ, så får du
ange Intervall i minutrar. Värdet 0 innebär varje tick.

Längst ner i fönstret finns fem funktionsknappar:
Ladda - öppnar en befintlig presentation. Ange kategori och namn på presentationen.
Spara - sparar presentationen i den kategori och under det namn som du anger. Vill du

skapa en ny kategori, så kan du göra det genom att skriva in namnet på den nya
kategorin.

Test - skapar ett fönster med en kurskurva i den övre rutan och ett volymdiagram i den
undre rutan.

Stäng - Om du inte gjort några ändringar i presentationen, så stängs
Presentationsredigeraren. Om du har gjort ändringar av inställningarna, så
kommer du att få välja om du vill spara dem.

Manual Presentationskontroll

© Delphi Economics 1998 Sida 4

Figur 4

Klicka på Diagram i Presentationsredigeraren för att ändra utseendet på diagrammen. I rutan
Tillgängliga finns de grafer som du kan ha med i diagrammen, samt två fält <Ny legendlinje>
och <Ny ruta>. Om din underliggande funktion innehåller två booleanska utvektorer, så
kommer även fältet <Vinsttest> att synas.

I rutan under Valda finns de olika diagram, med valda legendlinjer och grafer, som kommer att
visas vid körning av presentationen. Det fönster som genereras vid en körning kan innehålla en
eller flera rutor. Under Valda markeras varje sådan ruta med Ruta#1 osv. För varje ruta väljer
du vilka legendlinjer och grafer som ska presenteras.
När du skapar en ny presentation är Valda fyllt med standardvärdena för ett Kursdiagram. Du
kan välja att använda dem eller byta ut dem.

Under Graf kan du välja olika inställningar för de olika graferna i diagrammen. Genom att
markera en variabel under rubriken Grafer i Valda och sedan klicka på färgrutan i rutan Graf,
kan du ändra färg på grafen. Bland färgvalen finns en ”färgpalett”, som genom att du trycker
på den ger dig möjlighet att kombinera en ”egen” färgnyans.

Klicka på linjen vid rubriken Linje och du kan välja utseende på grafen. Du gör ditt val genom
att markera den önskade linjetypen

Vid Typ kan du välja mellan alternativen Linje, Stapel eller Candlestick. Om du valt linje vid
Typ, men vill ha möjlighet att byta typ under Modellinställningar när du kör presentationen, så
ska du vid Max välja Stapel eller Candlestick. Väljer du Candlestick, så får du möjlighet att
välja alla tre alternativen. Om du väljer Stapel, så kommer du att kunna välja mellan Linje och
Stapel i Modellinställningarna. Har du valt Linje så kommer du inte att kunna byta graftyp i
diagrammet.

Manual Presentationskontroll

© Delphi Economics 1998 Sida 5

Vid Y-skala kan du välja om du vill ha en, bara höger, eller två, både höger och vänster, Y-
skalor. Inställningarna för skalorna gör du under diagrammets snabbmeny när du kör
presentationen.

Om din underliggande funktion innehåller två booleanska utvektorer kommer du vid Köp och
Sälj att kunna välja vilken som ska användas som köp- respektive säljvektor för grafen.

Under Ruta kan du sätta höjden på de olika rutorna. Du kan också välja om du vill ha linjär
eller logaritmisk Y-skala. Dessutom kan du skapa fasta, vågräta nivålinjer för den ena eller för
båda av de lodräta skalorna genom att klicka på knappen med linjer till höger om
skaltypsrutorna. När du trycker på någon av de båda knapparna, så får du fram uppgifter om
de nivålinjer, som finns att välja mellan. Du kan här också, om du vill, ta bort redan inlagda
nivålinjer.

Lägga till grafer i en redan skapad ruta
Skulle du vilja lägga till en graf i en redan skapad ruta, så markerar du först rutan, t ex Ruta#1,
och därefter namnet på den önskade grafen under Tillgängliga och klickar sedan på Lägg till.

Ta bort en redan skapad ruta
Vill du ta bort en ruta, så markerar du rutan, t ex Ruta#1, under Valda och klickar på Ta bort.

Ändra namn på en kurva
För att ändra namnet på en kurva trycker du på Legendlinje.

Lägga till en ruta
Vill du lägga till ytterligare en ruta så klickar du på <Ny ruta>. Då läggs det in en ny, tom ruta,
under rubriken Valda.
Du kan flytta den tomma rutan till önskad plats genom att klicka på Flytta upp respektive
Flytta ner.

Lägga in en graf i en ruta
Du börjar med att markera den ruta, under rubriken Valda, i vilken du vill lägga in en graf.
Under Tillgängliga finns de grafer, som du kan välja mellan. Du markerar där den graf, som du
vill lägga in, och klickar på Lägg till. Då läggs grafen in, vilket du kan se genom att under den
aktuella rutan, under Valda, kommer namnet på grafen fram under Grafer. Texten <tom>
läggs till under Legendlinjer.

För att ge grafen ett namn, så klickar du på Legendlinjer… .
Då får du upp dialogrutan Redigera Legendlinje.
Här kan du antingen ange ett av de tillgängliga namnen eller så väljer du att ange ett nytt namn.
I det senare fallet markerar du Ny sträng och skriver in det nya namnet i rutan bredvid Sträng.
Därefter klickar du på OK och kommer då tillbaka till Presentationsredigeraren.

Ta bort en graf från en ruta
Om du vill ta bort en graf från en ruta, så markerar du grafen under Valda och klickar på Ta
bort.

Ändra graftyp och färg

Manual Presentationskontroll

© Delphi Economics 1998 Sida 6

När du klickar på någon av de grafer, som du valt att ha med i din presentation, så kommer du
att kunna se den gällande graftypen, linje, stapel eller candlestick, och den gällande färgen. Du
har då möjlighet att ändra presentationen av grafen, om du skulle föredra en annan utformning.
Kontrollera att du valt rätt ruta och att markeringen gjorts under rubriken Grafer och INTE
under rubriken Legendlinjer.

Du behöver inte spara efter varje grafs inställning, men när du gjort alla inställningar för din
presentation måste du spara genom att trycka på Spara.

Välja storlek på ruta
Du kan genom att skriva in ett nytt tal, standardvärdet är 100, ändra storleken på en ruta du
markerat under Valda.

Figur 5

Utforma tabeller
För att utforma tabeller trycker du på Tabell-knappen. Du får då fram dialogrutan ovan (se
Figur 5).
Här kan du lägga till kolumner, som skall ingå i tabellen, genom att först markera den önskade
uppgiften under Tillgängliga, och därefter trycka på Lägg till.

På samma sätt kan du ta bort kolumner, som ingår i Valda, genom att markera uppgiften och
trycka på Ta bort.

Vill du ändra på en kolumnrubrik, så gör du det genom att under Valda markera den rubriken.
Den kommer då att synas i rutan under Kolumnrubrik och där kan du skriva in den önskade
rubriken. Du har möjlighet att få rubriken skriven på två eller flera rader genom att använda \n
som radbrytningstecken. Om du tex vill ha rubriken momentumvärde på två rader, så kan du
skriva momentum\nvärde.

Manual Presentationskontroll

© Delphi Economics 1998 Sida 7

Figur 6

När du trycker på knappen Inställningar, så kommer du att se fönstret ovan. Här bestämmer
du hur dialogrutan för Modellinställningar ska utformas.
Under Valda ser du standardinställningen. Du kan förändra utseendet på Modellinställningar
genom att lägga till och ta bort de olika alternativen.
Om du markerar en rubrik under Valda, så kommer namnet att synas i rutan bredvid Rubrik.
Du kan skriva in ett nytt namn på rubriken.
De rubriker som under Valda står ut i vänsterkant och har en indenterad rubrik under, är
expansioner, dvs i Modellinställningar kommer de att ha en knapp bredvid sig. När du i sin tur
klickar på den öppnas en dialogruta, i vilken du kan välja mellan flera alternativ.
För att skapa en expansion klickar du på Ny Expansion, sedan skriver du in rubriken i rutan
bredvid Rubrik.

För att enkelt kunna slå på och av grafer och kolumner så kan man koppla dem. Genom att
koppla grafer och kolumner, så grupperar du dem. Om du t ex inte vill visa volymen i ett
diagram och en tabell och volymen är kopplad, så går du in under Modellinställningar och
avmarkerar rutan för volym. Volymen kommer då varken att visas i digrammet eller i tabellen.
För att skapa en ny koppling, klicka på Ny Koppling, skriv in en rubrik. Klicka därefter på
Koppla… , så får du upp en dialogruta där du ska välja vilka grafer och kolumner som ska
kopplas. Kryssruta måste vara markerad för att du ska kunna koppla. Du kan välja vilken
default du vill ha för kryssrutan - markerad eller omarkerad. Det markerar du i rutan vid
Default.

Flytta rubriker upp och ner gör du genom att markera den rubrik du vill flytta och sedan klicka
på Flytta Upp eller Flytta Ner. Om du vill flytta upp en rubrik, så ska du tänka på att om
rubriken står under en expansion, så kommer den att flyttas in i expansionen. Klickar du

Manual Presentationskontroll

© Delphi Economics 1998 Sida 8

ytterligare en gång på Flytta Upp så kommer den att flyttas ur expansionen och hamna
ovanför.

När du har sparat din presentation under ett specifikt namn, så kan du välja Hjälpfil-knappen
och skriva en hjälpfil för presentationen. Observera att om du inte skriver en hjälpfil för
presentationen, så kommer funktionens hjälpfil att visas om du väljer Hjälp, F1, när
presentationen körs.

Spara en presentation
Du sparar en presentation genom att klicka på Spara och välja dels den kategori, som
presentationen skall sparas under, dels ge ett namn till presentationen.

Vikingen
FutureLook

by

Referensmanual för Viking FutureLook™

© 1997-1999 Delphi Economics Sida 2

Delphi Finansanalys AB

Referensmanual för Viking FutureLook™

© 1997-1999 Delphi Economics Sida 3

All text i rött måste kontrolleras
eller justeras.
Till ordlistan: kompilator, sträng,
kod, uttryck, returvärde

Innehållsförteckning
1 Innehållsförteckning 3
2 Referensmanual modellspråket 4
2.2 Inledning 4
2.3 Tidsenheter 4
2.3.1 Intradaydata (1) 5
2.3.2 Dagsdata (2) 5
2.3.3 Veckodata (3) 5
2.3.4 Månadsdata (4) 5
2.4 Kommentarer och mellanslag 5
2.5 Identifierare 6
2.6 Datatyper 7
2.6.1 boolean, booleanvector 8
2.6.2 instrument 10
2.6.3 integer, integervector 11
2.6.4 real, realvector 12
2.6.5 set 13
2.6.6 string 14
2.6.7 time, timevector 15
2.7 Funktionshuvud 22
2.8 Variabeldeklarationer 23
2.8.1 Startvärden 23
2.8.2 Exempel 24
2.9 Kod 24
2.9.1 Satser, funktioner och konstanter 24
2.9.2 Operatorer 44
2.10 Reserverade ord 49

Referensmanual för Viking FutureLook™

© 1997-1999 Delphi Economics Sida 4

Referensmanual modellspråket
Inledning

Ett modell skrivs i modellspråket som en funktion. En funktion
består av ett textdokument som beskriver hur funktionen beräknas
och vilka in- och utdata den har. Varje funktion ges ett unikt
namn så att den kan identifieras från Vikingen men även från
andra funktioner.
Varje funktion tillhör ett bibliotek, som helt enkelt är en
samling funktioner. För att anropa funktionen Analys i
biblioteket MittNyaBibliotek skriv så här:

MittNyaBibliotek.Analys(p1, p2, p3);

Om funktionen Analys ligger i samma bibliotek som anropande
funktion behöver man inte ange biblioteksnamnet.
Med modellspråket följer ett standardbibliotek vid namn ”Std”
med en mängd användbara funktioner. Biblioteksnamnet behövs inte
anges vid anrop av Std-funktioner. Vilka funktioner som ingår
hittar du i <referens till std-kapitlet> .
Här följer ett exempel på hur en komplett funktion ser ut. Denna
funktion adderar parametern term till varje element i close-
vektorn för ett finansiellt instrument (exv en aktie) och
returnerar den därigenom framräknade vektorn.
Symbolen ”:=” betyder tilldelning. I nedanstående funktion
skulle man kunna omformulera tilldelningssatsen som följer: ”Låt
värdet av utvektor[i] vara lika med resultatet av beräkningen
objekt.close[i] + term”. Variabeln till vänster tilldelas
värdet av uttrycket till höger.
Värdet på parametrarna objekt och term sätts vid körning av
funktionen till värden som bestäms av användaren, precis som vid
körning av vilken modell som helst.

par(objekt : instrument; term : integer) : realvector;

var i : integer;

utvektor : realvector;

begin

for i := 1 to len(objekt.close) - 1 do

utvektor[i] := objekt.close[i] + term;

end;

return utvektor;

end;

Tidsenheter

Referensmanual för Viking FutureLook™

© 1997-1999 Delphi Economics Sida 5

En funktion tar vanligtvis kursdata som indata. Dessa kursdata
kan vara på fyra olika format, intradaydata, dagsdata, veckodata
eller månadsdata. I Vikingen bestäms tidsenheten från
Presentationseditorn eller från verktygsraden.
Via funktionen Std.TimeUnit kan man ta reda på vilken tidsenhet
som funktionen körs på. Inom parentes nedan anges vilka värden
Std.TimeUnit returnerar för respektive tidsenhet.

Intradaydata (1)
Vilka vektorer finns med alla tick, vilka vektorer finns med x-
minuters intervall? (Erland)

Dagsdata (2)
Vilka vektorer finns och vad innehåller dom? (Erland)

Veckodata (3)
Vilka vektorer finns och vad innehåller dom? (Erland)

Månadsdata (4)
Vilka vektorer finns och vad innehåller dom? (Erland)

Kommentarer och mellanslag
Mellanslag, tabbar och radavslut ignoreras av kompilatorn så
länge dom inte finns inuti reserverade ord eller identifierare.
Följande två exempel är ekvivalenta.
utvektor := abs(invektor);

utvektor :=

 abs(

 invektor

);

Kommentarer i koden kan göras på två sätt.

a := 12; // Kommentar All text efter // fram
till slutet av raden är en
kommentar, och ignoreras
av kompilatorn.

Referensmanual för Viking FutureLook™

© 1997-1999 Delphi Economics Sida 6

(* Detta är en flerradig

kommentar. Detta är en

flerradig kommentar. Detta

är en flerradig kommentar.
*)

All text mellan (* och *)
är en kommentar och
ignoreras av kompilatorn.

Kommentaren kan sträcka
sig över flera rader.

Identifierare

Identifierare är ett annat ord för variabelnamn eller
funktionsnamn. Följande exempel visar hur en identifierare får
se ut (och inte får se ut).
Längd Å, Ä och Ö är tillåtna i

variabel- och
funktionsnamn.

LÄNGD Modellspråket skiljer inte
mellan stora och små
bokstäver. LÄNGD refererar
till samma variabel som
längd.

längd10 Siffror kan användas så
länge identifieraren inte
börjar med en siffra.

10längd Denna sträng är inte
godkänd eftersom den
börjar med en siffra.

DettaÄrEttLångtNamn Identifierare kan maximalt
vara 149 tecken långa.

Return Denna sträng är inte
godkänd eftersom den är
ett reserverat ord. Se 0
Reserverade ord (sida 49).

Identifierare kan kombineras med andra identifierare och
symboler enligt följande exempel.

Utvektor :=
Std.Abs(invektor)

Anrop av av funktionen Abs
i biblioteket Std.

Observera att just i
fallet med funktioner i
Std så är det inte
nödvändigt med
biblioteksnamnet, utan

Referensmanual för Viking FutureLook™

© 1997-1999 Delphi Economics Sida 7

funktionsnamnet räcker.
objekt.close Variabeln objekt av typen

instrument innehåller
medlemsvariabler, bland
annat en som heter close.

invektor[12] Skriv så här för att komma
åt det 12:fte elementet i
vektorn invektor.

objekt.open[i] Variabeln i är en
heltalsvariabel. Om i har
värdet 10 kommer man åt
element 10 i
medlemsvariabeln open i
variabeln objekt.

Objektlista[0] Skriv så här för att komma
åt den första vikingkoden
i objektlista.

Datatyper

Varje parameter och variabel är av en viss datatyp, eller
kortare: typ. Funktioner som returnerar ett värde är också av en
viss typ. Typen anges så här.

var index : integer;

Variabelnamnet är ”index”. Typen är ”integer”. En variabel kan
beskrivas som en lagringsplats för ett värde. Lagringsplatsen
har ett namn, variabelnamnet, för att man skall kunna referera
till dess värde.
För typerna integer, real, boolean och time finns dom
motsvarande vektortyperna integervector, realvector,
booleanvector och timevector. En vektor är i modellspråket en
följd av tal (eller andra värden) av samma typ. Innehållet i
(tal-)följden kallas element och åtkoms via []-parenteser:
”vektor[12]” motsvarar det 12 :fte elementet i vektorn.

real: 12.3

realvector: 12.3, 22.5, -0.7, 133.50

Talet 12.3 utgör
värdet på

element 0 i
denna realvector.

Talet 133.50
utgör värdet på

element 3 i
denna realvector.

T
a

Referensmanual för Viking FutureLook™

© 1997-1999 Delphi Economics Sida 8

Vid en given körning av en funktion är alla vektorer lika långa.
Längden beror av hur mycket kursdata som laddats upp för
huvudobjektet i Vikingen. Användaren bestämmer detta
tidsintervall i modellinställningar. Antalet element kan inte
ändras inifrån en funktion.
Dom typer som finns är följande.

boolean, booleanvector
En variabel av typen boolean (en ”boolsk” variabel) kan ha ett
av två värden, true eller false. En variabel av typen
booleanvector, är en vektor med enbart boolska värden. Det
första elementet i en vektor har index 0.

b := true;

b := false;
En boolsk
variabel kan
sättas till
antingen true
eller false.

b := 12 > 10; Resultatet av
en jämförelse
är alltid ett
boolskt
värde. I
detta fall
kommer b att
sättas till
true.

par(rv : realvector) : booleanvector;

var köp : booleanvector;

begin

 köp := rv > mavn(rv, 10);

 return köp;

end;

Vektorn köp
sätts till
resultatet av
en elementvis
jämförelse
mellan två
reella
vektorer.
Varje element
har antingen
värdet true
eller false.

if b1 and b2 then

 // Både b1 och b2 har värdet true.
Se nedan
under
rubriken 0

Referensmanual för Viking FutureLook™

© 1997-1999 Delphi Economics Sida 9

end; Operatorer
(sida 44) för
mer
information.

if b1 or b2 then

 // Antingen b1 eller b2 har värdet

 // true.

end;

Se nedan
under
rubriken 0
Operatorer
(sida 44) för
mer
information.

par(objekt : instrument; längd :
integer);

begin

 if objekt.close > 100 then

 end;

end;

If-satser tar
alltid en
boolean som
parameter.

Denna if-sats
ger ett
kompileringsf
el eftersom
uttrycket
returnerar en
booleanvector
, där varje
element kan
vara true
eller false.

Jämförelser
mellan
booleanvector
er genomförs
lämpligtvis i
en loop där
varje element
kontrolleras.
Se 0 For,
sida 27.

not, and, or, =, <> Dessa
operatorer
kan användas
med boolean
och
booleanvector
.

Se nedan
under

Detta uttryck är
av typen
booleanvector,
eftersom
objekt.close är
av typen
realvector. Varje

Referensmanual för Viking FutureLook™

© 1997-1999 Delphi Economics Sida 10

rubriken
Operatorer
för mer
information.

instrument
Typen instrument motsvarar ett värdepappersobjekt – financial
instrument. En variabel av denna typ har 7 medlemsvariabler när
man kör på tidsenheterna dag, vecka och månad.

rv := objekt.open; Sätt rv till objektets
open-vektor
(öppningskurs).

rv := objekt.close; Sätt rv till objektets
close-vektor (slutkurs).

rv := objekt.high; Sätt rv till objektets
high-vektor
(högstakurs).

rv := objekt.low; Sätt rv till objektets
low-vektor (lägstakurs).

rv:= objekt.vol; Sätt rv till objektets
vol-vektor (volym).

rv:= objekt.evol; Sätt rv till objektets
evol-vektor (efteranmäld
volym).

str1 := objekt.code; Sätt sträng-variabeln
str1 till objektets
vikingkod. Se 0 string,
sida 14.

if objekt1 = objekt2 then

 // ...

end;

Inga operatorer (exv =,
<>, +, -) på instrument
stöds i den nuvarande
versionen av
modellspråket. Däremot
stöds flera operatorer
på ett instruments
medlemsvektorer, se 0
real, realvector,
sida12.

När en modells körs på intradaydata har den 5 medlemsvariabler.

rv := objekt.last; Sätt rv till objektets

Referensmanual för Viking FutureLook™

© 1997-1999 Delphi Economics Sida 11

last-vektor
(senastekurs).

rv := objekt.ask; Sätt rv till objektets
ask-vektor (säljkurs).

rv := objekt.bid; Sätt rv till objektets
bid-vektor (köpkurs).

rv:= objekt.vol; Sätt rv till objektets
vol-vektor (volym).

str1 := objekt.code; Sätt sträng-variabeln
str1 till objektets
vikingkod.

integer, integervector
Integer betyder heltal. Heltal används till exempel som index i
vektorer. En heltalsvektor - integervector - innehåller enbart
heltal. Det första elementet i en vektor har index 0.

par(värde : integer) : integervector;

var heltalsvektor : integervector;

begin

 heltalsvektor[20] := värde;

 return heltalsvektor;

end;

I denna
funktion
sätts
element 20 i
heltalsvekto
r till
värde.
Övriga
element i
vektorn
förblir
odefinierade
.

+, -, *, /, =, <>, <, <=, >, >= Dessa
operatorer
kan användas
med integer
och
integervecto
r.

Se nedan
under
rubriken
Operatorer
för mer
information.

Referensmanual för Viking FutureLook™

© 1997-1999 Delphi Economics Sida 12

index := 2147483646; Detta är det
högsta
heltalet som
kan
användas.

index := 2147483647; Detta ger
kompilerings
fel. Värdet
är för högt.

if undef(i) then

 // i är odefinierad, och bör inte

 // användas i fortsatta beräkningar.

Else

 // i är ok, och kan användas i

 // fortsatta beräkningar.

end;

En integer-
variabel kan
ha ett
odefinierat
värde. Detta
testas med
funktionen
undef.

real, realvector
Aktiekursen för en viss dag är av typen real (decimaltal).
Aktiekurserna för flera dagar i en följd är av typen realvector.
Vektorn close i en variabel av typen instrument är alltså av
typen realvector. Det första elementet i en vektor har index 0.

utvektor := objekt.close; Kopiera varje
element i
objekt.close till
utvektor.

utvektor[0] := 12.23; Sätt första
element i
utvektor till
12.23.

r := 2000.0 Sätt r till
2000.0.

r := 2.0E3; Ett annat sätt
att sätta r till
2000.0 (2.0 *
103).

r := 0.002; Sätt r till
0.002.

r := 2.0E-3; Ett annat sätt
att sätta r till
0.002 (2.0 * 10-

3).

Referensmanual för Viking FutureLook™

© 1997-1999 Delphi Economics Sida 13

+, -, *, /, =, <>, <, <=, >, >= Dessa operatorer
kan användas med
real och
realvector.

Se nedan under
rubriken
Operatorer för
mer information.

if undef(r) then

 // r är odefinierad

else

 // r är ok.

end;

En real-variabel
kan ha ett
odefinierat
värde. Detta
testas med
funktionen undef.

set
Vikingens objektlistor kan hanteras i modellspråket. Dess
datatyp heter set. Ett set är i modellspråket en vektor av
vikingkodsträngar. Det vanligaste sättet att använda ett set är
att anropa GetData för att hämta in data för en viss vikingkod.
Det första elementet i ett set har index 0.

En vikingkod är en sträng av bokstäver och siffror som är högst
11 tecken lång. Till exempel är ”190072” vikingkoden för OMX-
INDEX.

Referensmanual för Viking FutureLook™

© 1997-1999 Delphi Economics Sida 14

par(var objektlista : set);

var rv : realvector;

begin

 for i := 0 to len(objektlista) - 1 do

 GetData(

 Rv,

 "PriceData", // Databas

 objektlista[i], // Vikingkod

 "close", // Medlemsvariabel

 "", "", 0, 0, 0, 0, 0, 0

);

 end;

 // Gör nåt här med inladdade data

end;

Hämta in
close-
vektorn för
varje objekt
i
objektlista.

RemoveFromSet(objektlista, 0); Ta bort det
första
elementet ur
objektlista.

AddToSet(objektlista, "190072"); Lägg till
vikingkoden
” 190072”
till
objektlista.

if objekt1 = objekt2 then

 // ...

end;

Inga
operatorer
på set stöds
i den
nuvarande
versionen av
modellspråke
t.

string
String, eller sträng på svenska, är en följd av tecken. Ett
tecken är en bokstav, en siffra eller en annan symbol på
tangentbordet. Textsträngar används för olika ändamål i
modellspråket, se exempel nedan.

par(objekt : instrument) : realvector;

var rv : realvector;

begin

Strängar
används i
anrop till
GetData för

Referensmanual för Viking FutureLook™

© 1997-1999 Delphi Economics Sida 15

 GetData(

 rv,

 "PriceData", // Databas

 "100115", // Vikingkod

 "close", // Medlemsvariabel

 "", "", 0, 0, 0, 0, 0, 0

);

 return rv;

end;

att ange
vilken
databas,
vilket objekt
och vilken
medlemsvariab
el som skall
laddas in.

Str1 := 'Hejsan';

str2 := "Hejsan";
En sträng
avgränsas med
' eller ".

str1 := "Vem är "Alan Greenspan" ?";

str2 := 'Vem är 'Alan Greenspan'.';
Dessa
fungerar
inte.

str1 := "Alan är en 'finansnörd' ?";

str2 := 'Alan är en "finansnörd".';
Dessa
fungerar
utmärkt.

Om " skall
finnas med i
strängen,
använd ' som
avgränsare,
och vice
versa.

if str1 = str2 then

 // ...

end;

Inga
operatorer på
strängar
stöds i den
nuvarande
versionen av
modellspråket
.

time, timevector
Datatypen time representerar en tidpunkt. Se <std library-
kapitlet> för mer information om användningen av de
tidsrelaterade funktioner som förekommer i nedanstående exempel.

Referensmanual för Viking FutureLook™

© 1997-1999 Delphi Economics Sida 16

Datatypen timevector används endast i form av konstanten
timevec, som behövs som parameter till vissa funktioner (se
nedan). Timevector kan inte användas som typ för en parameter
eller variabel.

par(var tidpunkt1 : time) : time;
var tidpunkt2 : time;
begin
 tidpunkt1 := time("97-02-19");
 tidpunkt2 := time("1992-09-01 12.20.30");
 return tidpunkt2;

end;

Datatyp
en
heter
time.
För att
sätta
en
tidsvar
iabel
till
ett
visst
datum
och
klocksl
ag så
används
funktio
nen
time
som tar
ett
sträng
med en
tidsutt
ryck
som
paramet
er.

Referensmanual för Viking FutureLook™

© 1997-1999 Delphi Economics Sida 17

Tidpunkt2 := TimeOfIndex(timevec, 0); Funktio
nen
TimeOfI
ndex
används
för att
ta fram
tidpunk
ten för
ett
visst
index,
i detta
fall 0.

Index := IndexOfTime(timevec,

 time("930202"));
Funktio
nen
IndexOf
Time
gör
tvärtom
, den
returne
rar
index
för en
tidpunk
t.

DistansKalenderdagar :=
 DistanceInDays(time("1890-01-01"),
 time("1990-01-01"));

Funktio
nen
Distanc
eInDays
returne
rar
antalet
kalende
rdagar
mellan
två
tidpunk
ter.

Referensmanual för Viking FutureLook™

© 1997-1999 Delphi Economics Sida 18

DistansBörsdagar :=

 IndexOfTime(timevec, time("1997-01-01")) -

 IndexOfTime(timevec, time("1996-01-01"));

Beräkna
antal
börsdag
ar
mellan
två
datum
genom
att ta
skillna
den i
index
mellan
dessa
datum.

Kursvek
torer
innehål
ler
endast
börsdag
ar.

if not undef(tidpunkt) then
 // tidpunkt är ok
end;

En
tidpunk
t kan
vara
odefini
erad.
Använd
undef
för att
testa
detta.

if TimeUnit(timevec) = 1 then
 // Intraday
end;

Använd
funktio
nen
TimeUni
t för
att ta
reda på
vilken
tidsenh
et som
man kör
på.
TimeUni
t
returne
rar:

Referensmanual för Viking FutureLook™

© 1997-1999 Delphi Economics Sida 19

1 -
Intrada
y
2 - Dag
3 -
Vecka
4 -
Månad

DagensClose := main.close[Now]; Now är
ett
index
som
alltid
pekar
på
dagens
värde i
kursvek
torerna
(eller
annan
tidsenh
ets
aktuell
a
tidpunk
t).

if TimeUnit(timevec) = 1 and Minutes = 0 then
 // Alla tick
end;

Minutes
innehål
ler
tidsint
ervalle
t vid
körning
på
intrada
y. Om
Minutes
är
noll,
så körs
modelle
n på
samtlig
a tick.

=, <>, >, >=, <, <= Dessa
operato
rer kan
använda

Referensmanual för Viking FutureLook™

© 1997-1999 Delphi Economics Sida 20

s med
tidpunk
ter.

Se
nedan
under
rubrike
n
Operato
rer för
mer
informa
tion.

tidpunkt := time("2000-01-01");

// Lägg till två kvartal
tidpunkt := NextQuarter(tidpunkt, 2);
// Nu är tidpunkt lika med 2000-07-01

// Dra ifrån 3 dagar
tidpunkt := NextDay(tidpunkt, -3);
// Nu är tidpunkt lika med 2000-06-28

Använd
funktio
nerna
NextSec
ond,
NextMin
ute,
NextHou
r,
NextDay
,
NextWee
k,
NextQua
rter
och
NextYea
r för
att
lägga
till en
eller
flera
tidsenh
eter
till en
tidpunk
t.

Observe
ra att
funktio
nerna
också
klarar
negativ

Referensmanual för Viking FutureLook™

© 1997-1999 Delphi Economics Sida 21

a tal.

Korttids- och långtidsformat

Tidpunkter finns i två varianter, korttidsformat och
långtidsformat.

Korttidsformat innehåller uppgifter om både datum och tidpunkt.
Långtidsformatet innehåller endast datum. För intraday används
alltså korttidsformatet.

Nackdelen med korttidsformatet är att det bara kan representera
tidpunkter mellan "1990-01-01 00.00.00" och "2053-12-31
23.59.59". Om man försöker använda en tidpunkt utanför detta
intervall så returneras undef.

Korttidsformatet innehåller endast jämna sekunder, om man
försöker använda 12.02.23 så konverteras detta automatiskt till
12.02.22.

En tidpunkt lagras på långtids- respektive korttidsformat
beroende på om klockslag anges eller inte.

Här följer exempel på tidpunkter i korttids- och långtidsformat.

// Ange en tidpunkt på korttidsformat
tidpunkt1 := time("960612 17.34.34");

// Detta blir undef eftersom datum inte anges
tidpunkt1 := time("17.34.34");

// Tidpunkten ligger utanför det godkända
// intervallet för korttid, tidpunkt1 blir
// undef.
tidpunkt1 := time("1989-06-12 17.34.34");

// Detta fungerar eftersom långtidsformat
// används när inte klockslag anges.

Referensmanual för Viking FutureLook™

© 1997-1999 Delphi Economics Sida 22

tidpunkt1 := time("1989-06-12");

if time("1997-01-01 12.02.23") =
 time("1997-01-01 12.02.22") then
 // Detta är sant, eftersom endast jämna
 // sekunder lagras.
end;

Funktionshuvud

Funktionens första rad som alltid inleds med ”par” (= ”parameter
list”) kallas funktionens huvud. ”Par” följs alltid av ”(<lista
av parametrar>)”. Funktionens namn står alltså inte med i
koden.

Funktionshuvudet kan se ut på följande sätt.

par(objekt : instrument); Funktionen tar en
parameter av typen
instrument, som fått
namnet objekt.

par(objekt1, objekt2,
objekt3 : instrument);

Funktionen tar tre
parametrar av typen
instrument, som fått
namnen objekt1, objekt2
och objekt3.

Par(objekt : instrument;
längd : integer);

Funktionen tar två
parametrar, den första av
typen instrument och den
andra av typen integer.
Den andra parametern har
fått namnet längd.

par(invektor : realvector;
var utvektor :
realvector);

Funktionen tar två
parametrar, båda av typen
realvector. Den andra
parametern vid namn
utvektor är var-
deklarerad.

Var står för ”variabel”
vilket betyder att när
funktionen anropas måste
denna parameter vara en
variabel. Ändringar som
görs till denna variabel
inuti funktionen görs

Referensmanual för Viking FutureLook™

© 1997-1999 Delphi Economics Sida 23

direkt på originalet, och
inte på en kopia vilket är
normalfallet. Att var-
deklarera en parameter
innebär att den kan
användas för att bära
resultatet av en
beräkning.

par(invektor : realvector;
var utvektor1, utvektor2 :
realvector);

Både utvektor1 och
utvektor2 är var-
deklarerade.

par(objekt : instrument) :
realvector;

Efter avslutande parentes
följer ett kolon samt
funktionens returtyp.
Denna funktion kan därmed
anropas (från en annan
funktion) som ett uttryck
eller en del i ett
uttryck. Om funktionen
heter mav skulle man kunna
anropa funktionen så här:
”rv := mav(obj)”.

Detta är det andra sättet
en funktion kan leverera
sina utdata (det första är
via var-parametrar enligt
exempel ovan).

Variabeldeklarationer
Om funktionen använder sig av variabler som inte är parametrar,
följs funktionshuvudet av variabeldeklarationer.

Startvärden
Ett startvärde är det värde en variabel har precis efter
”begin”, innan någon kod har hunnit köras.

Variabler av typen integer, integervector, real, realvector och
time sätts till odefinierat som startvärden. Använd funktionen
undef för att testa om ett värde är odefinierat.

Bool och booleanvector sätts till false som initialvärde. En
string sätts till "" (tom sträng). Ett set är tomt från början
(len(setvariabel) returnerar 0).

Referensmanual för Viking FutureLook™

© 1997-1999 Delphi Economics Sida 24

Exempel
Variabeldeklarationer kan se ut på följande sätt.

Var Funktionen använder inga
variabler. Här kan man
helt utsluta var och
forsätta direkt med begin.

var i : integer; Deklaration av variabeln i
av typen integer.

var i, j, k : integer; Deklaration av variablerna
i, j och k av typen
integer.

var i : integer;

 j : integer;

 r : real;

var b1, b2 :
booleanvector;

Deklaration av fem
variabler av varierande
typ. Som synes behövs var
endast en gång, men kan
användas vid följande
deklarationer om så
önskas.

Kod
Efter variabeldeklarationerna kommer själva koden som består av
en eller flera rader med satser inneslutna mellan begin och
end;. Ordet sats kan sägas vara synonymt med kommando.

Begin

 // Här finns en massa

 // satser

 BeräknaSumman(a, b);

 ...

end;

begin följs av ett
godtyckligt antal rader
satser, följt av end;.

Glöm inte att
alltid avsluta med
semikolon.

Satser, funktioner och konstanter
Kodens huvudbeståndsdelar är satser och uttryck. Uttryck kan
inte stå ensamma utan måste finnas i en sats.

i := k + m * x; Detta är ett
tilldelningssats. Den
innehåller uttrycket (k +

Referensmanual för Viking FutureLook™

© 1997-1999 Delphi Economics Sida 25

m * x).

Här följer en beskrivning av alla satser, specialfunktioner (len
och undef) och konstanter (now, minutes, timevec) som ingår i
modellspråket. Listan är i bokstavsordning.

AddGraphic
 Med AddGraphic kan man lägga till grafiska element –
trendlinjer och textsträngar – i diagrammen.

AddGraphic(

Grafvariabel
,

Denna parameter är valfri, och kan
utelämnas.

Om grafvariabeln finns med kommer det
grafiska elementet att kopplas till den
graf som variabeln motsvarar. Detta
innebär att elementet alltid placeras i
samma pane som grafvariabeln.

Om variabeln utelämnas kopplas elementet
alltid till det översta panet.

Variabeln måste vara en var-deklararerad
parameter av typen realvector.

 Typ, I nuläget stöds typerna "Line" och
"Text".

 Text, Texten som skrivs ut i diagrammet, om
typen är "Text". Om typen är "Line" så
ignoreras denna sträng.

 x1, Startposition i längdled. Ett heltal som
anger på vilket vektorindex texten eller
trendlinjen skall starta. Använd
IndexOfTime för att hitta rätt index för
en viss tidpunkt.

 y1, Startposition i höjdled. Ett reellt tal
som lämpligvis sätts till ett värde nära
rv[x1], om rv är den vektor som det
grafiska elementet är kopplat till.

 x2, Slutposition i längdled. Ett heltal som
anger på vilket vektorindex trendlinjen
skall sluta. Detta värde ignoreras för
Texter. Använd IndexOfTime för att hitta

Referensmanual för Viking FutureLook™

© 1997-1999 Delphi Economics Sida 26

rätt index för en viss tidpunkt.
 y2 Slutposition i höjdled. Ett reellt tal

som lämpligvis sätts till ett värde nära
rv[x2], om rv är den vektor som det
grafiska elementet är kopplat till.
Detta värde ignoreras för Texter.

);

Här följer några exempel på använding av AddGraphic.

par(var rv : realvector) : realvector;

var x1, x2 : integer;

 utvektor : realvector;

begin

 x2 := len(rv) - 1;

 x1 := x2 - 50;

 AddGraphic(rv, "Line", "",

 x1, rv[x1],

 x2, rv[x2]);

end;

Placera en
trendlinje
från och
med 50
dagar från
sista dag
i vektorn
till och
med sista
dag.

Start- och
slutpositi
on i
höjdled
ligger på
respektive
dags
vektorvärd
e.

AddGraphic(rv, "Text", "Köp NU!",

 x1, rv[x1],

 0, 0.0);

Samma sak
som ovan
fast
texten
"Köp NU!"
placeras
ut.

AddGraphic("Text", "Köp NU!",

 x1, rv[x1],

 0, 0.0);

Samma som
ovan fast
texten
följer
inte med
en
speciell
variabel
utan
hamnar

Referensmanual för Viking FutureLook™

© 1997-1999 Delphi Economics Sida 27

alltid i
översta
pane.

AddToSet och RemoveFromSet
AddToSet och RemoveFromSet lägger till och tar bort
vikingkodsträngar från en objektlista.

par(var objektlista : set);

begin

 AddToSet(objektlista, "100100");

end;

Vikingkoden
100100 läggs
till på slutet
av
objektlista.

par(var objektlista : set);

begin

 RemoveFromSet(objektlista, 78);

end;

Den 78:de
vikingkoden
tas bort från
objektlista.

Om inte
element 78
finns
genereras ett
körningsfel.

For
For-satsen, eller for-loopen används när man vill utföra en
kodsekvens för varje element i en vektor. For-loopen tar tre
parametrar, den första kallas loopvariabel och är av typen
integer. Variabelns värde ökas med ett för varje varv i loopen.
Dom andra två parametrar är start- och slutvärde för
loopvariabeln.

Om start- och slutvärdena är lika kommer repetitionen att göras
en gång. Om startvärdet är större än slutvärdet kommer
repetitionen inte att göras alls.

♦ Värdet på loopvariabeln får inte ändras i kodsekvensen.

♦ Observera att slutvärdet endast beräknas en gång.

♦ For-satsen måste avslutas med end;.

for loopvariabel := start to slut do Så här ser en

Referensmanual för Viking FutureLook™

© 1997-1999 Delphi Economics Sida 28

 // Gör nåt här

end;
for-loop ut.

for i := 0 to len(objekt.close) - 1 do

 utvektor[i] := objekt.close[i];

end;

Kopiera hela
objekt.close
till utvektor.

Funktionsanrop
Funktioner som inte har ett returvärde kan anropas som en sats.
Funktioner som har ett returvärde måste användas som ett uttryck
eller del av ett uttryck.

par(objekt : instrument);

begin

 MyFunction(objekt.close);

end;

Anropa den
egna
funktionen
MyFunction med
parametern
objekt.close.

par(objekt : instrument) : realvector;

var rv : realvector;

begin

 // Det första anropet

 Abs(objekt.close);

 // Det andra anropet

 rv := Abs(objekt.close) + 5;

 return rv;

end;

Det första
anropet ger
kompileringsfe
l eftersom Abs
returnerar en
realvector.

Det andra
anropet
fungerar
eftersom
anropet
används som
ett uttryck.

// Anropa MyFunction i MyLibrary-

// biblioteket.

MyLibrary.MyFunction(x);

För anrop av
funktioner i
andra
bibliotek
måste
biblioteksnamn
et och en
punkt placeras
framför
funktionsnamne
t.

// Anropa Abs i Std-biblioteket

rv := Abs(objekt.close);
Funktioner i
Std-
biblioteket

Referensmanual för Viking FutureLook™

© 1997-1999 Delphi Economics Sida 29

kan anropas
utan att
biblioteksnamn
et ges.

// Anropa Abs i samma bibliotek

rv := Abs(objekt.close);

// Anropa Abs i Std-biblioteket

rv := Std.Abs(objekt.close);

Om funktionen
Abs även finns
i aktuellt
bibliotek så
anropas den
funktionen
istället för
Abs i Std-
biblioteket.

Om Std.Abs
skall anropas
så måste
biblioteksnamn
et placeras
framför
funktionsnamne
t.

GetData
GetData är en generell funktion som hämtar in data från olika
databaser. I nuläget stöds inhämtning av kursdata och
fundamentaldata.

Vid varje körning av en funktion utgår alla beräkningar från ett
aktuellt objekt (instrument) och en aktuell tidsvektor. För
tidsenheterna dag, vecka och månad innehåller tidsvektorn alla
börsdagar/veckor/månader, även om aktuellt objekt saknar data
för en viss dag/vecka/månad. Om kursdata saknas innehåller
kursvektorerna ett odefinierat värde.

Om ett objekt som laddats med GetData innehåller data på dagar
som inte finns i det aktuella objektets tidsvektor, kommer dessa
data att filtreras bort. Detta bör dock inte ske speciellt ofta.

Referensmanual för Viking FutureLook™

© 1997-1999 Delphi Economics Sida 30

För tidsenheten intraday innehåller tidsvektorn bara tidpunkter
där data finns för aktuellt objekt. Eftersom flödet av kursdata
ofta är sporadiskt kommer olika objekt i databasen att innehålla
data i olika tidsintervall. Vid användning av GetData för
uppladdning av intradaydata för ett objekt annat än det aktuella
kommer därför kursvektorerna att anpassas enligt det aktuella
objektets tidsvektor. Nedanstående exempel visar hur denna
anpassning utförs.

Objekt1 är det aktuella objektet, som nedan innehåller kursdata
för sex tidpunkter. Objekt2 är laddas upp med GetData. Det
innehåller kursdata för sju tidpunkter i databasen.

T
i
d
p
u
n
k
t
e
r

I
n
d
e
x

Objekt1.last
som den ser
ut i funktionen
och
databasen

Objekt2.l
ast som
den ser
ut i
databas
en

Objekt2.last som den
ser ut i funktionen
(efter uppladdning
med GetData)

1
1
.
3
3
.
4
0

328

1
1
.
3
3
.
4
4

330

1
2
.
2
0
.
0
0

0 122 330

1
2
.
2
0
.
2
4

1 122.50 odefinierat värde

1
2
.
3
5
.
4
4

2 122 329.50 329.50

Referensmanual för Viking FutureLook™

© 1997-1999 Delphi Economics Sida 31

1
2
.
3
6
.
0
0

330.50

1
3
.
2
2
.
1
0

3 121.50 330.50

1
3
.
2
2
.
1
4

4 121 331 331

1
2
.
2
2
.
2
2

5 122 331.50 331.50

1
2
.
2
2
.
2
4

333

Data flyttas alltså i tiden för att inte försvinna helt och
hållet. Denna metod används också vid laddning av
fundamentaldata. Fundamentaldata är ofta placerat på sista dagen
i varje månad, vilket bara ibland är en börsdag. För att dessa
data inte skall försvinna i uppladdningen placeras dom på
närmast efterföljande tidpunkt i det aktuella objektets
tidsvektor.

GetData finns i två varianter, en som tar 12 parametrar och en
som tar 13. I den trettonde parametern lagras en eventuell
felkod. Om den trettonde parametern saknas omvandlas ett
eventuellt fel till ett körningsfel. Det kan vara bra att
använda 12-parametersvarianten vid utveckling, för att växla
till 13-parametersvarianten för den färdiga funktionen. Genom
att ta hand om felkoden i funktionen undviker man att användaren
får konstiga felmeddelanden vid körningen av en modell.

Referensmanual för Viking FutureLook™

© 1997-1999 Delphi Economics Sida 32

Parametrarnas innebörd beror av vilken databas som data laddas
ifrån. Nedan används kursdatabas och fundamentaldatabas som
exempel.

GetData(

 Resultat, Här hamnar resultatet av uppladdningen.
Denna variabel kan vara av typen
instrument, realvector eller integer,
beroende på vilka data som skall laddas.

 Databas, En sträng som talar om vilken databas
som skall användas. I nuläget stöds
följande tre: ”PriceData” för kursdata,
”FundData” för fundamentaldata samt
”FundInfo” för speciella data som
används för fundamentalanalys.

Vikingkod,
Vikingkod för det objekt som data skall
laddas för.

Vektornamn,
Namn på medlemsvektor i ett instrument
(”close”) eller kortnamn på en
fundamentalvektor (”AXF”).

 String1, En i nuläget oanvänd strängparameter.
 String2, En i nuläget oanvänd strängparameter.

Fundindex,
Index för en fundamentalvektor.

Om kursdata laddas ignoreras denna.

Rapporttyp,
Används vid fundamentalladdning: 1 -
Årsrapport laddas, 2 - Kommuniké laddas,
3 - Prognos laddas.

Fundtidsenhe
t,

Används vid fundamentalladdning: 1 -
Månad, 2 - Kvartal, 3 - År.

 Adjust, Används vid fundamentalladdning: 1 -
Adjustfaktorn laddas, 2 -
fundamentalvektor laddas (enligt
Vektornamn eller Fundindex).

 Integer1, En i nuläget oanvänd heltalsparameter.
 Integer2, En i nuläget oanvänd heltalsparameter.

Felvariabel
Denna parameter är valfri, och kan
utelämnas.

Om den saknas kommer alla fel som
GetData ger upphov till att förvandlas
till körningsfel.

Referensmanual för Viking FutureLook™

© 1997-1999 Delphi Economics Sida 33

Om den finns, däremot, kommer den få ett
felvärde enligt följande lista.

0 Inget fel
1 Typfel på Resultat-variabeln.
2 Databasen finns inte.
3 Ett objekt med given vikingkod finns inte.
4 En vektor med givet namn finns inte.
5 Dataladdning misslyckades. Ospecificerat fel.
6 GetData-laddning inte tillgänglig från denna

applikation.
7 Aktuell tidsenhet (inte samma som

fundtidsenhet) stöds inte vid denna typ av
dataladdning. Exempelvis stöds inte laddning av
fundamentaldata när man kör på intradaydata.

8 Varken Vektornamn eller FundIndex är givna vid
fundamentalladdning.

9 Både Vektornamn och FundIndex är givna vid
fundamentalladdning. Endast en i taget får
anges.

10 Felaktig RapportTyp given. Den måste vara 1, 2
eller 3.

11 Felaktig Fundtidsenhet given. Den måste vara 1,
2 eller 3.

12 Felaktig Adjust given. Den måste vara 1 eller
2.

13 Givet Vektornamn saknas för Vikingkod vid
fundamentalladdning.

14 Givet Fundindex saknas för Vikingkod vid
fundamentalladdning.

);

Här följer några exempel på användning av GetData.

par(objektlista : set) : realvector;

var i : integer;

 objekt : instrument;

 utvektor : realvector;

begin

Ladda data
för
objekten i
en
objektlist
a.
Returnera

Referensmanual för Viking FutureLook™

© 1997-1999 Delphi Economics Sida 34

 for i := 0 to len(objektlista) - 1 do

 GetData(objekt, "PriceData",

 objektlista[i], "",

 "", "",

 0, 0, 0, 0, 0, 0);

 utvektor[i] :=

 objekt.close[len(objekt.close)-
1];

 end;

 return utvektor;

end;

en vektor
med
senaste
close-
värdet för
varje
objekt.

Vektornamn
et behövs
inte anges
eftersom
data för
ett helt
objekt
laddas.

var rv : realvector;

begin

 GetData(rv, "PriceData",

 objektlista[i], "close",

 "", "",

 0, 0, 0, 0, 0, 0);

end;

Här är
resultatva
riabeln en
realvector
, och då
måste
vektornamn
et ges :
"close".

par(objektlista : set) : realvector;

var i : integer;

 rv : realvector;

 utvektor : realvector;

begin

 for i := 0 to len(objektlista) - 1 do

 GetData(rv, "FundData",

 objektlista[i], "ANST",

 "", "",

 0, 1, 3, 2, 0, 0);

 rv := fill(rv);

 utvektor[i] := rv[len(rv)-1];

 end;

 return utvektor;

end;

Ladda
fundamenta
lvektorn
med antal
anställda
("ANST")
för
objekten i
en
objektlist
a.
Returnera
en vektor
med
senaste
värdet för
varje
objekt.

Vektornamn
et skall
alltid
skrivas
med stora

Referensmanual för Viking FutureLook™

© 1997-1999 Delphi Economics Sida 35

bokstäver
vid
fundamenta
lladdning.

OBS. Olika
mycket
data
laddas upp
beroende
på
kombinatio
nen mellan
Rapporttyp
och
Fundtidsen
het. Man
måste vara
noggrann
när man
skriver en
funddatamo
dell och
kontroller
a att man
får upp
önskade
data.

GetData(rv, "FundData",

 objektlista[i], "",

 "", "",

 16, 1, 3, 2, 0, 0);

Ladda
fundamenta
lvektorn
med antal
anställda
(fundament
alindex
16).

Detta är
ett
alternativ
t sätt att
ladda en
specifik
vektor.

Se
dokumentat
ion för
fundamenta

Referensmanual för Viking FutureLook™

© 1997-1999 Delphi Economics Sida 36

lanalys
för mer
informatio
n.

par(vikingKod : string) : integer;

var accountType : integer;

begin

 GetData(accountType, "FundInfo",

 vikingKod, "AccountType",

 "", "",

 0, 0, 0, 0, 0 ,0);

 return accountType;

end;

Databasen
"FundInfo"
används
för att
ladda upp
"AccountTy
pe" (Land)
eller
"Sector"
(Bransch).

Resultatet
är ett
heltal.

Se
dokumentat
ion för
fundamenta
lanalys
för mer
informatio
n.

If
If-sats används för villkorlig körning av en följd av satser
(kallas även kodsekvens). If-satsen måste alltid avslutas med
end;. Den kan innehålla en else-del.

if a > b then

 c := d;

end;

Om a är större
är b så kommer
c att sättas
till d.

if undef(objekt.close[0]) then

 // Första elementet i close-

 // vektorn är odefinierat

else

 // Första element i close-

 // vektorn är ok.

end;

Else-delen som
körs om
villkoret är
false.

Referensmanual för Viking FutureLook™

© 1997-1999 Delphi Economics Sida 37

par(a, b : real) : real;

var villkor : boolean;

begin

 villkor := a > b;

 if villkor then

 return a;

 else

 return b;

 end;

end;

Variabeln
villkor är av
typen boolean.
En if-sats tar
alltid en
boolean som
parameter.

Denna funktion
returnerar det
största värdet
av a och b.

if a > b then

 if x = y then

 // Gör nåt här

 else

 // Gär nåt annat här

 end;

else

 if x = z then

 // Gör nåt här

 else

 // Gör nåt annat här

 end;

end;

Ibland behöver
man använda en
if-sats inuti
en annan if-
sats.

Det kallas att
nästla if-
satser.

Len
for i := 0 to len(objekt.close) - 1 do

 // Gör nåt här

end;

for i := 0 to len(objektlista) - 1 do

 // Gör nåt här

end;

Använd
funktionen
len för
att ta
reda på
längden av
en vector
eller en
objektlist
a. Detta
behövs om
man skall
loopa
genom en
vektor
eller
objektlist

Referensmanual för Viking FutureLook™

© 1997-1999 Delphi Economics Sida 38

a (=
repetera
något för
alla
element).

Loop och exit
Loop-satsen används för att upprepa en kodsekvens. En loop-sats
innehåller inget villkor som while- och repeat-satserna.
Repetitionen måste avbrytas med ett anrop till Exit-satsen.

Loop-satsen måste avslutas med end;.

i := 50;

loop

 rvLoop[i] := 25.3;

 i := i + 2;

 if i >= 100 then

 exit; // Avbryt repetitionen

 end;

end;

Utför samma
sak som i
exemplet med
while-sats
ovan:

Vartannat
element i
rvLoop från
och med 50
till och med
98 sätts till
25.3.

loop

 while villkor1 do

 repeat

 exit;

 until villkor2;

 // Mer kod här

 end;

 // Mer kod här

end;

Exit avslutar
endast
närmaste loop-
, while- eller
repeat-sats.

I detta fall
är det repeat-
satsen som
omedelbart
avslutas.

Minutes

If TimeUnit(timevec) = 0 then
 if minutes = 0 then
 // Alla tick

Minutes
innehål
ler
tidsint
ervalle

Referensmanual för Viking FutureLook™

© 1997-1999 Delphi Economics Sida 39

 else
 // Tick samlas ihop i intervall om
 // minutes minuter.
 End;
end;

t vid
körning
på
intrada
y. Om
Minutes
är
noll,
så körs
modelle
n på
samtlig
a tick.

Now
Konstanten now används för att hitta dagens värde i vektorer.
Beroende på tidseneheten innehåller now index för aktuell
tidpunkt, dag, vecka eller månad.

Now är av typen integer.

dagensClose := objekt.close[now]; Sätt
variabeln
dagensClos
e till
dagens
close-
värde i
objekt.

RemoveFromSet
Se 0 AddToSet och RemoveFromSet (sida 27).

Repeat
Repeat-satsen används för att upprepa en kodsekvens.
Repetitionen kommer att fortsätta till dess att villkoret är
sant. Den andra skillnaden mot while-satsen är att villkoret för
repetitionen ligger efter kodsekvensen. Detta innebär att
satserna alltid kommer att utföras minst en gång.

Repeat-satsen måste avslutas med end;.

i := 50;

repeat
Utför samma
sak som i

Referensmanual för Viking FutureLook™

© 1997-1999 Delphi Economics Sida 40

 rvRepeat[i] := 25.3;

 i := i + 2;

until i >= 100;

exemplet med
while-sats
ovan:

Vartannat
element i
rvRepeat från
och med 50
till och med
98 sätts till
25.3.

Return
Return-satsen avslutar körningen av en funktion. Den finns i två
varianter, en med parameter och en utan.

par(objekt : instrument);

begin

 return;

 // Följande kod körs aldrig

 objekt.close := 2;

end;

Ingen kod
efter return
kommer att
köras.

par(objekt : instrument) : realvector;

begin

 return objekt.vol;

end;

Denna funktion
returnerar
vol-vektorn i
objekt.

par(objekt : instrument);

begin

 return objekt.vol;

end;

Detta ger
kompileringsfe
l eftersom
funktionshuvud
et inte
innehåller en
typdeklaration
för
funktionen.

par(objekt : instrument) : realvector;

begin

 return;

end;

Detta ger
kompileringsfe
l eftersom
funktionen
enligt
funktionshuvud
et måste
returnera en
realvector.

Referensmanual för Viking FutureLook™

© 1997-1999 Delphi Economics Sida 41

Tilldelning
Tilldelning kopierar värdet av uttrycket till höger till variabeln till
vänster. Tilldelningen ”i := x + y” kan utläsas ”Sätt variabeln i till
summan av x och y”.

Vid tilldelning mellan vektortyper sker tilldelningen element
för element. Satsen

vektor1 := vektor2;

omvandlas internt till

vektor1[0] := vektor2[0];

vektor1[1] := vektor2[1];

vektor1[2] := vektor2[2];

...

vektor1[len(vektor1) - 1] := vektor2[len(vektor1) - 1];

Tilldelning kan göras mellan följande typer.

integer := integer; -
integervector := integervector;

integervector := integer; Alla element i
vektorn får samma
värde.

real := real; -
real := integer; -
realvector := realvector; -
realvector := integervector;

realvector := real; Alla element i
vektorn får samma
värde.

realvector := integer; Alla element i
vektorn får samma
värde.

boolean := boolean; -
booleanvector := booleanvector; -

Referensmanual för Viking FutureLook™

© 1997-1999 Delphi Economics Sida 42

booleanvector := boolean; Alla element i
vektorn får samma
värde.

string := string; -
instrument := instrument; -
time := time; -
timevector := timevector; Fel. Denna typ

kan inte användas
för parametrar
eller variabler.
Se 0 time,
timevector på
sida 3. Justera
rubrik och
sidnummer.

set := set; -

Exempel på tilldelningar.

index := 0; index sätts till 0.
objekt.close := objekt.open; Innehållet i open-

vektorn kopieras till
close-vektorn.

invektor[12] := 12.21; Element 12 i invektor
sätts till 12.21.

objekt.close[index] := 0.0; Givet index i close-
vektorn sätt till 0.0.

objektlista[0] :=
objekt.code;

Det första vikingkoden
i objektlista sätts
till objektets
vikingkod.

Timevec
Timevec är en vektor vars element är av typen Time. Den
innehåller tidpunkterna för motsvarande index i övriga vektorer.
I den nuvarande versionen av modellspråket kan dock inte
Timevec[n] användas för att hitta tidpunkten för det n:te
elementet. Istället måste TimeOfIndex-funktionen användas.

Timevec används som parameter i några funktioner, exempelvis
IndexOfTime, TimeOfIndex och TimeUnit. Se <std library kapitlet>
för dessa funktioner för mer information.

Referensmanual för Viking FutureLook™

© 1997-1999 Delphi Economics Sida 43

Undef
r := 0/0;

if undef(r) then

 // Detta är sant eftersom division

 // med noll ger odefinierat resultat.

end;

tid := time("10:00:00");

if undef(tid) then

 // Detta är sant eftersom datum

 // måste anges för en tidpunkt.

end;

Använd
funktionen
undef för
att ta
reda på om
en
integer,
real eller
time är
odefiniera
d.

While
While-satsen används för att upprepa en kodsekvens. Repetitionen
kommer att fortsätta så länge villkoret är sant. Om villkoret
för repetition är falskt första gången kommer kodsekvensen
mellan while och end aldrig att köras.

While-satsen måste avslutas med end;.

i := 50;

while i < 100 do

 rvWhile[i] := 25.3;

 i := i + 2;

end;

Vartannat
element i
rvWhile från
och med 50
till och med
98 sätts till
25.3.

while 1 < 2 do

 // Gör nåt, oändligt många gånger

end;

Varning! Detta
ger en oändlig
repetition,
som inte kan
avbrytas. 1
kommer alltid
att vara
mindre än 2 så
repetitionen
kommer aldrig
att upphöra.

Referensmanual för Viking FutureLook™

© 1997-1999 Delphi Economics Sida 44

Operatorer

Precedens och parenteser
Plus och minus är två exempel på operatorer. En operator är en
funktion där funktionsnamnet står mellan parametrarna istället
för före parametrarna. Man skriver ”12 + x” och inte ”+(12, x)”.

Problemet med detta skrivsätt är att tvetydigheter uppstår.
Skall additionen eller multiplikationen utföras först i
uttrycket ”x + 5 * 3”? Svaret är att multiplikationen skall
utföras först. När ett uttryck beräknas är beräkningsordningen
följande:

1. not

2. * / and

3. + - or

4. = <> < <= > >=

Not är högst upp på listan och sägs därför ha högst precedens.
Operatorer med samma precedens beräknas från vänster till höger.

Observera att uttrycket i satsen

if x = 12 and b < 100 then

 ...

end;

är syntaktiskt inkorrekt. Eftersom and har högst precedens
skulle beräkningen börja med ”12 and b” vilket är felaktigt
eftersom 12 och b inte är av typen boolean. Man löser problemet
med parenteser:

if (x = 12) and (b < 100) then

 ...

end;

I det första exemplet ”x + 5 * 3” kan man ändra
beräkningsordningen så här

(x + 5) * 3

Referensmanual för Viking FutureLook™

© 1997-1999 Delphi Economics Sida 45

Nu kommer additionen att utföras först.

Aritmetiska operatorer
För dom aritmetiska operatorerna gäller att om en eller båda av
operanderna (parametrarna) är odefinierad så blir resultatet
odefinierat.

När en eller båda av parametrarna till en operator är vektorer
utförs operationen element för element i vektorerna.

Resultatet av division med 0 är odefinierat (kan testas med
undef(resultat)).

Unärt minus (minustecken som används för att negera ett uttryck)
kan bara förekomma först i ett uttryck eller direkt efter en
parentes. Följande är ok ”-2 * 3” men inte ”-2 * -3”. Använd
istället ”-2 * (-3)”.

Följande typer och operatorer går att kombinera.

* + - Resultattyp
integer * + - integer integer

integer * + - real real

integer * + - integervector integervector

integer * + - realvector realvector

real * + - integer real

real * + - real real

real * + - integervector realvector

real * + - realvector realvector

integervector * + - integer integervector

integervector * + - real realvector

integervector * + - integervector integervector

integervector * + - realvector realvector

realvector * + - integer realvector

realvector * + - real realvector

realvector * + - integervector realvector

realvector * + - realvector realvector

Referensmanual för Viking FutureLook™

© 1997-1999 Delphi Economics Sida 46

/ Resultattyp
integer / integer real

integer / real real

integer / integervector realvector

integer / realvector realvector

real / integer real

real / real real

real / integervector realvector

real / realvector realvector

integervector / integer realvector

integervector / real realvector

integervector / integervector realvector

integervector / realvector realvector

realvector / integer realvector

realvector / real realvector

realvector / integervector realvector

realvector / realvector realvector

Boolska operatorer
När en eller båda av parametrarna till en operator är vektorer
utförs operationen element för element i vektorerna.

Observera att båda operanderna (parametrarna) alltid beräknas,
även om resultatet av beräkningen inte påverkas av den andra
operandens värde.

Dom boolska operatorer fungerar så här. Givet värdena till
vänster på A och B blir resultaten av dom olika operationerna
enligt värdena till höger.

A B A
a
n
d
B

A

o
r

B

n
o
t

A

Referensmanual för Viking FutureLook™

© 1997-1999 Delphi Economics Sida 47

t
r
u
e

t
r
u
e

tr
ue

t
r
u
e

f
a
l
s
e

t
r
u
e

f
a
l
s
e

fa
ls
e

t
r
u
e

f
a
l
s
e

f
a
l
s
e

t
r
u
e

fa
ls
e

t
r
u
e

t
r
u
e

f
a
l
s
e

f
a
l
s
e

fa
ls
e

f
a
l
s
e

t
r
u
e

Följande typer och operatorer går att kombinera.

and or Resultattyp
boolean and or boolean boolean

boolean and or booleanvector booleanvector

booleanvector and or boolean booleanvector

booleanvector and or booleanvector booleanvector

Relationella operatorer
För dom relationella operatorerna gäller att om en eller båda av
operanderna (parametrarna) är odefinierad så blir resultatet
odefinierat.

När en eller båda av parametrarna till en operator är vektorer
utförs operationen element för element i vektorerna.

Följande typer och operatorer går att kombinera.

= <> Resultattyp
integer = <> integer boolean

Referensmanual för Viking FutureLook™

© 1997-1999 Delphi Economics Sida 48

integer = <> real boolean

integer = <> integervector booleanvector

integer = <> realvector booleanvector

real = <> integer boolean

real = <> real boolean

real = <> integervector booleanvector

real = <> realvector booleanvector

boolean = <> boolean boolean

boolean = <> booleanvector booleanvector

integervector = <> integer booleanvector

integervector = <> real booleanvector

integervector = <> integervector booleanvector

integervector = <> realvector booleanvector

realvector = <> integer booleanvector

realvector = <> real booleanvector

realvector = <> integervector booleanvector

realvector = <> realvector booleanvector

booleanvector = <> boolean booleanvector

booleanvector = <> booleanvector booleanvector

time = <> time boolean

< <= > >= Resultattyp
integer < <= > >= integer boolean

integer < <= > >= real boolean

integer < <= > >= integervector booleanvector

integer < <= > >= realvector booleanvector

real < <= > >= integer boolean

real < <= > >= real boolean

real < <= > >= integervector booleanvector

real < <= > >= realvector booleanvector

integervector < <= > >= integer booleanvector

integervector < <= > >= real booleanvector

integervector < <= > >=
integervector

booleanvector

integervector < <= > >= realvector booleanvector

realvector < <= > >= integer booleanvector

realvector < <= > >= real booleanvector

Referensmanual för Viking FutureLook™

© 1997-1999 Delphi Economics Sida 49

realvector < <= > >= integervector booleanvector

realvector < <= > >= realvector booleanvector

time < <= > >= time boolean

Reserverade ord
Följande ord är reserverade för speciella ändamål i
modellspråket kan inte användas som variabel- eller
funktionsnamn.

addgraphic, addtoset, and, begin, do, else, end, exit, false,
for, getdata, if, len, loop, minutes, not, now, or, par,
removefromset, repeat, return, then, timevec, to, true, undef,
until, var, while

Funktioner till Future Look.
Modellspråket som skapar nya
möjligheter.

1 Inledning
Här kommer en genomgång av de funktioner som ingår i
standardversionen av modellspråket Future Look. Funktionerna
används som byggstenar vid skapandet av de modeller, som du vill
konstruera.
Först något om strukturen i en modell. Så här ser ”skelettet”
till en modell ut.

(*text,text,text*)

Par (main : instrument; …);

Var … ; // text,text,text

Begin

end;

Låt oss nu ta de olika delarna i tur och ordning.
(* *) betyder att programmet skall betrakta det som står inuti
som text. Du kan t.ex. att ge dig själv och andra information om
en RSI modell genom att skriva (*Det här är en RSI-modell, som
ger signaler….. *).
Ett annat sätt att infoga text , givet att texten ryms före
radslutet, är att ange två slashar, //, som anger att allt till
höger om // fram till slutet av raden är text.
Efter Par anges alla de tidsserier och de parametrar som skall
ingå i modellen, t.ex. längden på medelvärden, och dessutom alla
de tidsserier, som du vill kunna visa på skärmen. Det gäller
både de som skall hämtas från databasen och de som du skapar i
modellen.
Sedan har vi var, som anger att de uppräkningar som följer efter
denna bara skall användas för mellanberäkningar och aldrig blir
aktuella att redovisa i en presentation.
När ovanstående är gjort, så har vi angivit de storheter, som
skall ingå i modellen.
Mellan Begin och end; skapar du din modell.

Standardfunktioner för Viking FutureLook™

© 1997-1999 Delphi Economics Sida 2

Vi ger nu ett exempel på hur du gör en modell, som skapar ett
medelvärde på slutkursen på aktier. Då börjar du med att skriva
så här:

(*Den här modellen skapar medelvärden. *)

 Par(main : instrument;

MAVlängd : integer;

out Medelvärde : realvector);

När man kör en modell så behöver man data till modellen. Det
vanliga är att man använder sig av ett objekt, som finns i
Vikingens databas, aktie, index, ränta eller råvara. För att
använda ett objekt i Vikingens databas så börjar du modellen med
main : instrument. Du kan uppfatta det så att du genom att ange
main : instrument får en option att använda det aktuella
objektets öppnings, högsta, lägsta och slutkurser samt volym i
din modell. Med det aktuella objektet avses det objekt, som
laddats upp, när du startade Vikingen.
Här kommer en finess i Future Look. Du kan namnge de storheter
du använder i modellen i klartext. I det exempel, som vi håller
på med så använder vi MAVlängd och Medelvärde.
Datatyperna för storheterna i modellen måste anges. Det gör vi
på följande sätt.

MAVlängd : integer;

Genom att skriva integer anger du att MAVlängd är ett heltal.
Genom att göra så här, så kan du när du kör modellen i
modellinställningar ändra längden på medelvärdet.

Medelvärde : realvector;

Medelvärde : realvector talar om att när du i din modell skriver
Medelvärde så avser du en tidsserie, som består av reella tal.
Out i Medelvärde : realvector anger att du vill ha möjligheten
att presentera tidsserien ifråga i diagram och/eller tabell.
När man gör en modell, så finns ett stort antal funktioner
skapade, som du kan använda dig av. Dessa presenteras senare.
I vårt exempel, så kommer vi att använda oss av MAVN, som är en
funktion som ger en tidsserie av icke centrerade medelvärden.

Standardfunktioner för Viking FutureLook™

© 1997-1999 Delphi Economics Sida 3

I MAVN funktion anger vi dels et objekt, som det skall skapas
ett medelvärde för, dels längden på medelvärdet. I vårt fall ser
det ut så här. MAVN(main.close, MAVlängd).
För mer information om MAVN se nedan under MAVN.
Nu skapar vi själva modellen.

Begin

Medelvärde := MAVN(main.close, MAVlängd);

end;

När du gör modeller använder du dig av tilldelningstecknet :=.
Det anger att det som står till vänster om det skall få det
värde som finns till höger om det.
I vårt exempel så har vi givit Medelvärde värdet av de
beräkningar som ¨MAVN utfört på objektets slutkurser. Hade vi
stället för main.close skrivit main.low, så hade Medelvärde
beräknats på objektets lägsta kurser.
Här kommer nu den fullständiga modellen för
medelvärdesberäkningen .

(*Den här modellen skapar medelvärden. *)

Par(main : instrument;

MAVlängd : integer;

out Medelvärde : realvector);

Begin

Medelvärde := MAVN(main.close, MAVlängd);

end;

Nu ger vi dig ett ytterligare exempel på en modell där du
använder dig av MAVN.
Antag att du vill skapa en oscillatormodell. D.v.s. en modell
där du skapar två medelvärden för att sedan ta skillnaden mellan
dessa. Oscillatorn är tidsserien av skillnaderna. Det skulle
kunna se ut så här

Standardfunktioner för Viking FutureLook™

© 1997-1999 Delphi Economics Sida 4

(*Oscillator. © Delphi International Company

Version 981203.

Detta är en modell som skapar en oscillator, d.v.s. skillnaden mellan två medelvärden av
längderna MAVkort och MAVlång.*)

Par(main : instrument;

MAVkort, MAVlångt: integer;

out Oscillatorvärde : realvector);

var KortMedelvärde, LångtMedelvärde : realvector;

Begin

KortMedelvärde := MAVN(Main.Close, MAVkort);

LångtMedelvärde := MAVN(Main.Close, MAVlångt);

Oscillatorvärde := KortMedelvärde -LångtMedelvärde;

end;

Nu har du redan förstått hur Begin och end används. Begin talar
om att nu börjar instruktionerna för beräkningarna, end att nu
är det slut.
När vi i Par angivet main : instrumnet så ger vi Vikingen
instruktioner att när vi väljer att köra modellen på aktier,
ladda upp högsta, lägsta, öppnings och slutkurser samt volymer.
Det innebär inte att du måste använda alla dessa tidsserier i
din modell, bara att du har en option att använda dem.
Avslutningsvis mer om parametrar. De vektorer som vi använder är
som regel tidsserier och beräkningsmässigt börjar de med index
0. Vektorerna är av tre slag, integervector , realvector och
booleanvector. En integervector består av en serie av heltal. En
realvector består av en serie av reella tal. En booleanvector
består av en serie av Sann och Falsk.
 I vissa lägen som t.ex. vid längden på medelvärden och vid
jämförelser bakåt i tiden måste du ange datatypen som
heltal.Använder du heltal, så har du den fördelen att
beräkningarna går snabbare.
Exempel på parametrar är längden på medelvärde, signalnivåerna i
RSI och antalet perioder i beräkningen av momentum. Parametrar,
som inte är tidsserier, skall definieras som integer, real
respektive boolean.

2 En kort genomgång

Standardfunktioner för Viking FutureLook™

© 1997-1999 Delphi Economics Sida 5

A timeseries X is defined as a limited, ordered sequence of n

elements { }x x x xi i

n

n=
=

1 1 2, ,...,

Exempel på tidsserier är slutkurser, högsta och lägsta kurser
och volymer. Andra exempel är tidsserier, som du skapar genom
att använda modellspråket och dess funktioner, t.ex. ett
medelvärde på slutkurserna. Ytterligare exempel är tidsserier,
som inte innehåller tal, utan består av elementen Sann (True)
och Falsk (False).

A, B, C, D, E, F are used to denote timeseries with boolean
elements. (True och False)

X, Y, Z, U, V, W are used to denote timeseries with real elements.
(T.ex. slutkurser)

K, L, M, N are used to denote timeseries with integer
elements. (T.ex. längden på ett medelvärde.
Anledningen att använda Integervectors (tidsserier
med heltal) är att beräkningarna går snabbare än om
du använder Realvectors (tidsserier med reella tal,
flyttal))

X[i], xi are used to denote the i:th element in the
timeseries X.

lower case letters are used to denote integer and float values
t1, t2 are used to denote times

are used to denote undefined elements in a
timeseries in the examples

T are used to denote a TRUE value in a boolean
timeseries in the examples

F are used to denote a FALSE value in a boolean
timeseries in the examples

R0, R1, R2, R3, R4 are used to denote timeseries with float elements
(flyttal) in the examples

I0, I1, I2, I3, I4 are used to denote timeseries with integer (heltal)
elements in the examples

B0, B1, B2, B3, B4 are used to denote timeseries with boolean elements
in the examples lower case letters are used to
denote integer and float values in the examples

t1, t2 are used to denote times in the examples

Standardfunktioner för Viking FutureLook™

© 1997-1999 Delphi Economics Sida 6

3 Modellspråksfunktioner

Här kommer nu en uppräkning av de olika funktionerna i
modellspråket. Funktioner som kan användas som byggelement i
skapandet av modeller.

ABS

Syntax

X := ABS(Y);

Description
The function calculates the absolute value for each element in Y
and returns them in X.
ABS använder du t.ex. när du vill beräkna slutkursens
volatilitet genom att jämföra dagens kurs med gårdagens kurs. Du
vill då ha nedgångarna med positiva tecken och det får du genom
att använda ABS.

{ }X =
=

yi i

n

1

Example
R0 10.0 -10.0 # -8.5 0.0
R1 := ABS(R0);
R1 10.0 10.0 # 8.5 0.0

Standardfunktioner för Viking FutureLook™

© 1997-1999 Delphi Economics Sida 7

Modellexempel
(*Volatilitetsberäkning

Version 981203

Detta är en modell för beräkning av slutkursens volatilitet.

Differns är lika med skillnaden mellan dagens slutkurs och gårdagens.

SummaDifferens är lika med slutkursensens förändring under AntalPerioder dagar.

Volatilitet är absolutbeloppet av slutkursens förändring mellan idag och igår.

SummaVolatilitet är summan av volatiliteterna under AntalPerioder dagar.*)

Par (main : instrument;

AntalPerioder : integer;

out SummaDifferens , Volatilitet, SummaVolatilitet : relavector): ;

var Differens: realvector;

Begin

Differens := Main.Close - SHIFT(Main.Close, 1);

SummaDifferens := SUM(Differens, AntalPerioder);

Volatilitet := ABS(Differens);

SummaVolatilitet := SUM(Volatilitet, AntalPerioder);

end;

ACCUM

Syntax

Z := ACCUM(A, X, Y);

Description
The function calculates the accumulated sum of the elements from
X and Y. If A[i] is true the value of X[i] is added to the sum,
if A[i] is false the value of Y[i] is added. Any undefined
values in X or Y is treated as 0.

() ()Z =






 =



= =

∑ f a x y f a x y
x
yk k k

k

i

i

n

, , , ,
1 1

, where
, if is true
, if is false

a
a

Standardfunktioner för Viking FutureLook™

© 1997-1999 Delphi Economics Sida 8

ACCUM kan användas t.ex. för att ta fram förändringen
mellan startdag och slutdag för en kurs.

Example
R0 -1.0 -2.0 -3.0 -4.0 -5.0
R1 1.0 2.0 # 4.0 5.0
B0 F T T F T

R2 := ACCUM(B0, R0, R1);

R2 1.00 -1.00 -4.00 0.00 -5.00

Modellexempel
(*Kursförändring © Delphi Internatioanl Company

Version 981203

Detta är en modell som gör det möjligt att beräkna a) kursförändringen

mellan idag och igår b) få en serie som visar vilka dagar kursen gått upp

respektive ner och c) NerUppfrekvensen uttryckt som ett procental för kvoten

mellan nettoantalet uppdagar och summa dagar.*)

par(Main : instrument;

out Kursförändring, UppNerfrekvens, NerUpp : realvector);

var PositivKursförändring, NegativKursförändring : booleanvector;

Uppdag, Nerdag : realvector;

begin

Kursförändring := Main.Close - SHIFT(Main.Close, 1);

PositivKursförändring := Kursförändring >= 0;

Uppdag := ONE(PositivKursförändring);

NegativKursförändring := Kursförändring <= 0;

Nerdag := ONE(NegativKursförändring);

NerUpp := Uppdag - Nerdag;

UppNerfrekvens := (100*ACCUM(PositivKursförändring, Uppdag, - Nerdag))/

ACCUM(PositivKursförändring, Uppdag, Nerdag);

end;

Standardfunktioner för Viking FutureLook™

© 1997-1999 Delphi Economics Sida 9

ALT

Syntax

Z := ALT(A, X, Y);

Description
The function copies elements from X and Y to Z. From which
timeseries the element is copied is decided by the boolean
values in A. If A[i] is true X[i] is copied to Z[i], if A[i] is
false Y[i] is copied.

(){ } ()Z = =


=

f a x y f a x y
x
yi i i i

n
, , , ,

1
, where

, if is true
, if is false

a
a

ALT använder du t.ex. om du vill skapa en tidsserie som endast
innehåller kursdifferenser för de dagar då kursen har varit
stigande.

Example
R2 := ALT(B0, R0, R1);
B0 F T F F T
R0 -1.0 -2.0 -3.0 -4.0 -5.0
R1 1.0 2.0 # 4.0 5.0
R2 1.0 -2.0 # 4.0 -5.0

Observera att om det ena eller båda av x och y är
odefinierade, så blir Z (i exemplet ovan R2) odefinierat.
Om du vill undvika att få in odefinierade värden, så kan du
använda dig av funktionen FILL. FILL fyller ut odefinierade
värden i en tidsserie med närmast föregående värde. Du kan
läsa mera om FILL nedan.

Standardfunktioner för Viking FutureLook™

© 1997-1999 Delphi Economics Sida 10

Modellexempel
(*StigandeKurser © Delphi International
Company

Version 981203.

Detta är en modell som skapar en tidsserie som endast innehåller kursdifferenser

för de dagar då kursen har varit stigande.*)

Par(Main : instrument;

out EndastPositivaKursförändringar : realvector);

var

PositivDIff : booleanvector;

Kursdifferens : realvector;

Begin

Kursdifferens := Main.Close - SHIFT(Main.Close, 1);

PositivDiff := Kursdifferens >= 0;

EndastPositivaKursförändringar := ALT(PositivDiff, Kursdifferens,Const(0.0));

end;

BETA

Syntax

Z := BETA(Y, X, p);

Description
The function calculates the beta-values β for the regression
line y = α + β (x - m) where m is the mean of x over the period p
and returns them in Z.
Y can for example be an index and X a stock price.
The beta-value for the regression line

y x x x
n

xi
i

n

= + − =
=

∑α β (), where
1

1

is calculated as follows

Standardfunktioner för Viking FutureLook™

© 1997-1999 Delphi Economics Sida 11

() ()S x x y y x
n

x y
n

yxy i i
i

n

i
i

n

i
i

n

= − − = =
= = =

∑ ∑ ∑
1 1 1

1 1
, where and

()S x x x
n

xxx i

n

i
i

n

= − =∑ ∑
=

2

1

1
i=1

, where

β = = −




 −

















= = = = =
∑ ∑ ∑ ∑ ∑S

S
n x y x y n x xxy

xx
i i

i

n

i
i

n

i
i

n

i
i

n

i
i

n

1 1 1

2

1 1

2

which gives

Z = −






−


























= − + = − + = − + = − + = − +
=

∑ ∑ ∑ ∑ ∑p x y x y p x xk k
k i p

i

k
k i p

i

k
k i p

i

k
k i p

i

k
k i p

i

i p

n

1 1 1

2

1 1

2

Example
R0 1.0 2.0 3.0 4.0 # 6.0

7.0 8.0 9.0 10.0
R1 10.0 20.0 30.0 40.0 50.0 60.0

65.0 70.0 75.0 80.0

R2 := BETA(R0, R1, 4);

R2 10.00 10.00 10.00
8.57 5.00 5.00 5.00

BMAX

Syntax

Y := BMAX(X, A);

Description
The function finds the local maximum from the signals in A.

Du vill t.ex. ta reda på det högsta värdet från senaste
köpdag. I modellspråket finns funktionerna BUY och SELL. De
kan användas för att beräkna resultaten av olika strategier
med hjälp av den Vinsttest som är inbyggd i Vikingen.

Standardfunktioner för Viking FutureLook™

© 1997-1999 Delphi Economics Sida 12

Example
Tid Y:=BMAX(X,A) X A
1998-08-10 218.50 218.5000 Sann
1998-08-11 219 219 Falsk
1998-08-12 222.50 222.5000 Falsk
1998-08-13 222.50 220 Falsk
1998-08-14 222.50 222.5000 Falsk
1998-08-17 222.50 221.5000 Falsk
1998-08-18 229 229 Falsk
1998-08-19 229 224.5000 Falsk
1998-08-20 229 220 Falsk
1998-08-21 213.50 213.5000 Sann
1998-08-24 213.50 206.5000 Falsk
1998-08-25 213.50 207.5000 Falsk

Standardfunktioner för Viking FutureLook™

© 1997-1999 Delphi Economics Sida 13

Modellexempel
(*MaxvärdeFrånKöp © Delphi International Company

Version 981203

Denna modell ger dig högsta värdet på slutkursen från köptillfället.

Som köpvillkor har satts att slutkursen måste överstiga sitt MAVlängd

långa medelvärde. Som säljvillkor har satts att slutkursen måste

understiga sitt MAVlängd långa medelvärde.*)

Par(main :instrument;

MAVlängd : integer;

out Medelvärde, Maxkurs : realvector;

out BUY, SELL : booleanvector);

var Köp, Sälj, b1 : booleanvector;

Undefvec : realvector;

Begin

Medelvärde := MAVN(Main.Close, MAVlängd);

Köp := Main.Close > Medelvärde;

Sälj := Main.Close <= Medelvärde;

(*Nedan används FILTERBUY och FILTERSELL funktionerna som sorterar bort

allt utom "första" köpsignal och "första" säljsignal.*)

BUY := FILTERBUY(Köp, Sälj);

SELL := FILTERSELL(Köp, Sälj);

MaxKurs := BMAX(Main.Close, BUY);

(*Det som följer här nedan gör att vi bara får maxkurserna i köplägen

Undefvec är en vektor som är tom och som skall gälla så snart vi inte ligger

i köp. Att vi lägger till NOT SELL beror på att vi annars skulle fått värden för

MaxKurs de dagar som säljsignalerna givits.*)

b1 := TOPD(ONE(BUY), 1) < TOPD(ONE(SELL), 1);

MaxKurs := ALT((b1 AND NOT SELL), MaxKurs, Undefvec);

end;

BMAXD

Syntax

Y := BMAXD(X, A);

Standardfunktioner för Viking FutureLook™

© 1997-1999 Delphi Economics Sida 14

Description
The function finds the number of days from the last local
maximal value in X with respect to the signals in A.
Här kan du t.ex. få reda på avståndet till senaste lokala
maximum efter en köpsignal.

Example
Tid Y := BMAXD(X, A); X A
1998-08-10 0 218.50 Sann
1998-08-11 0 219 Falsk
1998-08-12 0 222.50 Falsk
1998-08-13 1 220 Falsk
1998-08-14 0 222.50 Falsk
1998-08-17 1 221.50 Falsk
1998-08-18 0 229 Falsk
1998-08-19 1 224.50 Falsk
1998-08-20 2 220 Falsk
1998-08-21 0 213.50 Sann
1998-08-24 1 206.50 Falsk
1998-08-25 2 207.50 Falsk

Modellexempel
(*Avstånd © Delphi International Company

Version 981203

I den här modellen beräknas avståendet från det lokala maximivärdet efter senaste köpsignal.
Som villkor för köp krävs i modellen att slutkursen skall vara högre än medelvärdet för de
senaste MAVlängd perioderna. *)

Par(main :instrument;

MAVlängd : integer;

out Avstånd : realvector);

Var

Köp, Sälj : booleanvector;

Köpsignal : integervector;

Begin

Köp := Main.Close > MAVN(Main.Close, MAVlängd);

Sälj := Main.Close <= MAVN(Main.Close, MAVlängd);

Köp := FILTERBUY(Köp, Sälj); (* FILTERBUY rensar bort alla
köpsignaler utom den första efter en säljsignal. Vill du rensa bort alla icke unika säljsignaler, så
använder du dig av FILTERSELL. *)

Köpsignal := ONE(Köp); (*ONE funktionen skapar en tidsserie med 1 för
unika köpsignaler och i övrigt innehåller tidsserien nollor.

Avstånd := BMAXD(Main.Close, Köpsignal);

end;

Standardfunktioner för Viking FutureLook™

© 1997-1999 Delphi Economics Sida 15

BMIN
Se BMAX ovan.

BMIND

Syntax
Same as the equivalent ‘max’-functions

Description
The two ‘min’-functions performes the same calculations as BMAX
and BMAXD above but minimum values are returned.

Se BMAXD ovan.

BOT

Syntax

Y := BOT(X, p);

Description
Y[i] = the p:th local minimum extreme value of X before X[i].
X[i] is a local minimum extreme value if X[i-1] > X[i] and X[i]

<= X[i+1].

BOT använder du dig av för att få storleken på någon av de
senaste bottnarna för t.ex. slutkursen.

Example
R0 3.0 2.0 2.0 4.0 1.0 2.0

R1 := BOT(R0, 1);

R1 # 2.0 2.0 1.0

Standardfunktioner för Viking FutureLook™

© 1997-1999 Delphi Economics Sida 16

Modellexempel
(*Bottenkurs © Delphi International Company

Version 981203.

Här får du storleken på en bottenkurs. Du kan välja vilken bottenkurs bakåt i tiden

som du vill ha uppgift om genom att angevärdet på AntalBottnarTillbaka.*)

PAR(Main : instrument;

AntalBottnarTillbaka : integer;

out Bottenkurs : realvector);

Begin

Bottenkurs := BOT(Main.Close, AntalBottnarTillbaka);

end;

BOTD

Syntax

Y := BOTD(X, p);

Description
Y[i] = the distance to the p:th local minimum extreme value of X
before X[i].
X[i] is a local minimum extreme value if X[i-1] > X[i] and X[i]
<= X[i+1].

BOTD ger dig avståndet till någon av de senaste bottnarna
för en valfri tidsserie.

Example
R0 3.0 2.0 2.0 4.0 1.0 2.0

R1 := BOTD(R0, 1);

R1 # 1.0 2.0 1.0

Standardfunktioner för Viking FutureLook™

© 1997-1999 Delphi Economics Sida 17

Modellexempel
(*BottenavståndRSI © Delphi International Company

Version 981203

I den här modellen beräknas avståndet till den RSI botten, som ligger

AntalBottnarTillbaka.*)

Par(main : instrument;

RSIlängd, AntalBottnarTillbaka : integer;

out AvståndTillRSIbotten, RSIvärde : realvector);

var

Begin

RSIvärde := RSI1(Main.Close, RSIlängd);

AvståndTillRSIbotten := BOTD(RSIVärde, AntalBottnarTillbaka);

end;

CONST

Syntax

X := CONST(y);

Description
Returns a constant timeseries with float elements which all has
the value y. See also FLOATV.

{ }X = =y
i

n

1

Example
R0 := CONST(42.0);

R0 42.0 42.0 42.0 42.0 42.0 42.0

Standardfunktioner för Viking FutureLook™

© 1997-1999 Delphi Economics Sida 18

COPPOCK

Syntax

Y := COPPOCK(X, a, b, c);

Description
The function calculates the Coppock indicator for X where a is
the length of the moving average, b is the number of periods to
base changes on and c is the period to sum the differences for.
I ”Snabba aktievinster” kan du läsa om Coppockmodellen och också
om ytterligare ett antal vanligen använda tekniska modeller.

Example
R0 100 105 110 105 102 110

130 135 110 112

R1 := COPPOCK(R0, 2, 2, 2);

R1 0.06 -0.09
0.13 0.57 0.52 -0.12

DiffFromSignal

Syntax

X := DiffFromSignal(A,Y);

Description
The function calculates how much the Price data in Y has gone up
or down (in %) with respect to the signals in the vector A.
Filterbuy och Filtersell används för att filtrera bort alla
sanna värden för de logiska tidsserier som svarar mot behåll
(hold) respektive icke behåll (stay out) andra än de första
sanna värdena efter ett sant värde av motsatt slag.

Example
The vectors SELL and BUY is constructed with FilterBuy and
FilterSell.
Y is a filled vector with last price

SELL: T F F F F F
F T F

BUY: F F F F T
F F F F

Y: 3 4 5 5.5 6
3 4 7 8

X := DiffFromSignal(BUY or SELL, Y);

X := 33.3 66.6 83.3
-50 33.3 14.3

Standardfunktioner för Viking FutureLook™

© 1997-1999 Delphi Economics Sida 19

EXP

Syntax

Y := EXP(X);

Description
The function calculates the exponential of each element in X and
returns them in Y.

{ }Y = =e x
i

n
i

1

Example
R0 0.0 1.0 # 0.1 0.01

R1 := EXP(R0);

R1 1.0 2.7 # 1.11 1.01

FILL

Syntax

Y := FILL(X);

Description
Y[i] = the same as X[i], but with undefined values replaced with
the previous defined value.

Y
X X

Y X
[i] =





[i] , if [i] is defined
[i - 1] , if [i] is undefined

 , for i = 1,..., n

FILL är utmärkt att använda då du arbetar med tidsserier där det
saknas data för vissa dagar, t.ex. för kurser för bolag med låg
omsättning. FILL fyller då ut tidsserien så att du har en
komplett tidsserie. Att använda FILL i en sådan här situation är
detsamma som att säga att så länge som ny information inte finns
tillgänglig, så antar man status quo gäller.

Example
R0 # 1.0 # # 0.01 #

Standardfunktioner för Viking FutureLook™

© 1997-1999 Delphi Economics Sida 20

R1 := FILL(R0);

R1 # 1.0 1.0 1.0 0.01 0.01

FILTERBUY

Syntax

C := FILTERBUY(A, B);

Description
The function calculates a new buy timeseries A from the buy
timeseries B and the sell timeseries C where all unnecessary buy
signals in the buy timeseries are removed. All buy signals that
occur after a buy signal, but before any sell signal will be
removed.

Example
B0 F T T F T F

B1 F F F T T F

B2 := FILTERBUY(B0, B1);

B2 F T F F T F

FILTERSELL

Syntax

C := FILTERSELL(A, B);

Description
The function calculates a new sell timeseries C from the buy
timeseries A and the sell timeseries B where all unnecessary
sell signals in the sell timeseries are removed. All sell
signals that occur before any buy signal or after a sell signal,
but before any buy signal will be removed.

Example
B0 F T T F T F

B1 T F T T T T

B2 := FILTERSELL(B0, B1);

B2 F F T F F T

Standardfunktioner för Viking FutureLook™

© 1997-1999 Delphi Economics Sida 21

GetBuySellAge

Syntax

i := GetBuySellAge(A, B, X, Y);

Description
The function calculates the number of tradingdays from a
signal and fills the vectors X and Y with the result. The
return value is a dummy required only by internally
constructions.

Example
A: F T F F F F

F T F
B: F F F F T F

F F F

i := GetBuySellAge(BUY, SELL, X, Y);

X: # 0 1 2 # #
0 1

Y: # # # # 0 1
2 # #

GROWTHANN

Syntax

Y := GROWTHANN(X, y, p);

Description
The function calculates the annual growth rate in percentage, y
is the length of the year in timeunits and p is the period for
the change.

Y = −






−
























− −= − += − +
= +

∑∑t
p

x
x p

x
x

k

k

v

vv i p

i

k i p

i

i p

n

1
1

1 11

2

1
1

ln ln

Example
R0 102.00 103.00 102.50 102.50 101.00

101.50 102.00 102.00 103.00 102.50

R1 := GROWTHANN(R0, 252, 5); (* one week annual growthrate *)

R1 -38.90
-38.60 0.00 62.87 63.66

Standardfunktioner för Viking FutureLook™

© 1997-1999 Delphi Economics Sida 22

GROWTHSM

Syntax

Y := GROWTHSM(X, y, p);

Description
The function calculates the smoothed annual growth rate in
percentage, y is the length of the year in timeunits and p is
the period for the change.

Y = −






−
























− −= − += − +
= +

∑∑t
p

x
x p

x
x

k

k

v

vv i p

i

k i p

i

i p

n

1
1

1 11

2

1
1

ln ln

LOG

Syntax

Y := LOG(X);

Description
The function calculates the natural logarithm for each element
in X and returns them in Y.

(){ }Y =
=

log xi i

n

1

Example
R0 2.71 10.0 # 100.0 -5.0

R1 := LOG(R0);

R1 1.0 2.3 # 4.61 #

MAVC

Syntax

Y := MAVC(X, p);

Standardfunktioner för Viking FutureLook™

© 1997-1999 Delphi Economics Sida 23

Description
The function calculates a centered moving average of length p
for the timeseries X and returns it in Y.

Y =






= − + =

∑1

1p
xk

k i p

i

i p

n

Detta är en sällan använd funktion i teknisk analys där det
i stället regelmässigt används medelvärden som är icke
centrerade vilket innebär att medelvärdena lägga på den
sista dagen i stället för på den mittersta dagen.

Example
R0 1 2 5 # 2 3

4 1 2 3

R1 := MAVC(R0, 3);

R1 # 2.67 3.50 3.50 2.50 3.00
2.67 2.33 2.00 #

MAVN

Syntax

Y := MAVN(X, p);

Description
The function calculates a normal moving average of length p for
the timeseries X and returns it in Y.

Y =






= − + =

∑1

1p
xk

k i p

i

i p

n

Example
R0 1 2 5 # 2 3

4 1 2 3

R1 := MAVN(R0, 3);

R1 2.67 3.50 3.50 2.50
3.00 2.67 2.33 2.00

Standardfunktioner för Viking FutureLook™

© 1997-1999 Delphi Economics Sida 24

Här beräknas en ”vanligt” medelvärde, d.v.s. ett oviktat
medelvärde där varje värde har samma vikt. Medelvärdet
placeras på sista dagen för de värden som ingår i
beräkningen av medelvärdet.

Modellexempel

*Medelvärden

Version 981203

Här beräknas två stycken medelvärden med längderna KortMAV och LångtMAV.*)

Par(main : instrument;

KortMAV, LångtMAV : integer;

out KortMedelvärde, LångtMedelvärde : realvector);

var

Begin

KortMedelvärde := MAVN(Main.Close, KortMAV);

LångtMedelvärde := MAVN(Main.Close, LångtMAV);

end;

MAVW

Syntax

Y := MAVW(X, p);

Description
The function calculates a weighted moving average of length p
for X and returns it in Y.

()Y =
+







= − + =

∑2
1 1p p

kxk
k i p

i

i p

n

Det här medelvärdet är ett viktat, icke centrerat medelvärde,
där de ingående vikternas värde ökar successivt.

Standardfunktioner för Viking FutureLook™

© 1997-1999 Delphi Economics Sida 25

Example
R0 1 2 5 # 2 3

4 1 2 3

R1 := MAVW(R0, 3);

R1 3.00 4.00 2.00 2.00
3.00 2.00 2.00 2.00

MAVX

Syntax

Y := MAVX(X, p);

Description
The function calculates an exponential moving average of length
p for X and returns it in Y.

y
p

xp i
i

p

=
=

∑1
1

()y r y rx r
p

p p
k p nk k k= − + =

=
> = +



−1

1 1
2 1

11 , where
if
if

, for , ... ,

Här är det icke centrerade medelvärdets vikter
exponentiellt vägda.

Example
R0 1 2 5 # 2 3

4 1 2 3

R1 := MAVX(R0, 3);

R1 2.67 0.89 1.63 2.54
3.51 1.84 1.95 2.65

MAX

Syntax

Y := MAX(X, a);

Standardfunktioner för Viking FutureLook™

© 1997-1999 Delphi Economics Sida 26

Description
The function calculates Y where every element is the maximum of
the last a elements in X.

Den här funktionen använder du när du vill ta fram ett
högsta värde för t.ex. slutkurserna under ett antal dagar.

Example
R0 1 2 5 # -2 -3

-4 1 2 3

R1 := MAX(R0, 3);

R1 5 5 5 -2
-2 1 2 3

Modellexempel
(*Maxkurs

Version 981203

Här beräknas den högsta kursen för ett antal, AntalDagarTillbaka, dagar.*)

Par(Main: instrument;

AntalDagarTillbaka : integer;

out HögstaKurs : realvector);

var

Begin

HögstaKurs := Max(Main.Close, AntalDagarTillbaka);

end;

MAXD

Syntax

Y := MAXD(X, a);

Description
The function calculates Y where every element is the distance to
the maximum of the last a elements in X.
Här får du avstående till den högsta kursen under de antal dagar
som du anger.
Maxavstånd := MAXD(Main.close, 10); ger dig avståndet till
maxvärdet för de senaste 10 börsdagarna.

Standardfunktioner för Viking FutureLook™

© 1997-1999 Delphi Economics Sida 27

Example
R0 1 2 5 # -2 -3

-4 1 2 3

R1 := MAXD(R0, 3);

R1 0 1 2 1
2 0 0 0

MIN

Syntax

Y := MIN(X, a);

Description
The function calculates Y where every element is the minimum of
the last a elements in Y.

Fungerar som MAX ovan.

Example
R0 1 2 5 # -2 -3

-4 1 2 3

R1 := MIN(R0, 3);

R1 1 2 .2 -3
-4 -4 -4 1

MIND

Syntax

Y := MIND(X, a);

Description
The function calculates Y where every element is the distance to
the minimum of the last a elements in X.

Fungerar som MAXD ovan.

Example
R0 1 2 5 # -2 -3

-4 1 2 3

R1 := MIND(R0, 3);

R1 2 2 0 0
0 1 2 2

Standardfunktioner för Viking FutureLook™

© 1997-1999 Delphi Economics Sida 28

MOMABS

Syntax

Y := MOMABS(X, p);

Description
The function calculates the absolute momentum of length p for X
and returns it in Y.

{ }Y = − − + =
x xi i p i p

n

1

Antag att du vill beräkna skillnaden mellan kursen idag och fem
dagar tillbaka för att få en uppfattning om volatiliteten för
slutkurserna. Antag vidare att du vill beräkna ett medelvärde
för volatiliteten. Då vill du inte att skillnaderna skall kunna
vara negativa och det är här som MOMABS kan användas.

Example
R0 1 2 5 # -2 -3

-4 1 2 3

R1 := MOMABS(R0, 3);

R1 4 # -7 #
-2 4 6 2

MOMREL

Syntax

Y := MOMREL(X, p);

Description
The function calculates the relative momentum of length p for X
and returns it in Y.

Y =








 −










− + =

100 1
1

x
x

i

i p
i p

n

Ibland är du mer betjänt av att använda den relativa
förändringen i en kurs uttryckt i procent än den absoluta. Då
använder du MOMREL.

Standardfunktioner för Viking FutureLook™

© 1997-1999 Delphi Economics Sida 29

Example
R0 1 2 5 # -2 -3

-4 1 2 3

R1 := MOMREL(R0, 3);

R1 400.00 # -140.00 #
100.00 -133.33 -150.00 200.00

NORM

Syntax

Z := NORM(X, Y, a);

Description
If a is non-zero the function computes a normalization of X to
Y, i e Z shows how X would have looked like if it had the same
relative development as Y. If a is zero the funtion copies Y to
Z.

Z[1] = x1

Z =












−

− =

z
y

yi
i

i i

n

1
1 2

Example 1
R0 100 200 300 200 200 100

0 100 300 100
R1 10 20 30 20 20 10

0 10 30 10

R2 := NORM(R0, R1, 1);

R2 100 200 300 200 200 100
0 0 0 0

Example 2
R0 100 200 300 200 200 100

100 300 100
R1 10 40 60 40 40 20

5 15 5

R2 := NORM(R0, R1, 1);

R2 100 400 600 400 400 200
200 200 600 200

Standardfunktioner för Viking FutureLook™

© 1997-1999 Delphi Economics Sida 30

Observera att jämförelserna görs mellan två på varandra
följande data och inte med avseende på serierna första
data.

NTREND, see TREND

ONE

Syntax

Y := ONE(A);

Description
The function converts a boolean timeseries A to a numerical
timeseries Y. All true values in A are converted to 1 in Y and
all false values to 0.

y
a
a

i ni
i

i
=





=
1
0

1
if is true
if is false

, for , ... ,

ONE är en mycket värdefull funktion. Antag t.ex. att du angivit
villkoren för BUY och Sell som ju är boolska storheter och att
du vill i en presentation visa dessa i staplar innehållande +1,
0 och -1 beroende på om det föreligger köpläge, neutralläge
eller säljläge. Då kan du göra som i modellexemplet nedan.

Example
B0 T F T T F F

F T F

R0 := ONE(R0);

R0 1.0 0.0 1.0 1.0 0.0 0.0
0.0 1.0 0.0

Standardfunktioner för Viking FutureLook™

© 1997-1999 Delphi Economics Sida 31

Modellexempel

(*Signallista

Version 981203

Här beräknas en tidsserie, Position, innehållande 1 för unika köp, -1 för

unika sälj och i övrigt 0.

Den här modellen kan med fördel köras på en lista av aktier och tas ut i

form av en samlingstabell.*)

Par(Main : instrument;

out Position : realvector;

out BUY, SELL, Köp, Sälj : booleanvector);

var b1, b2 : booleanvector;

Begin

(*Här har lagts in två boolska vektorer för att visa

att du om du vill kan använda kortnamn som b1, b2 etc *)

b1 := Main.Close > MAVN(Main.Close, 5);

b2 := Main.Close < MAVN(Main.Close, 5);

//Som du ser ovan går det bra att också ge en konstant som längd på medelvärdet.

Köp := FILTERBUY(b1, b2);

Sälj := FILTERSELL(b1, b2);

Position := ONE(Köp) - ONE(Sälj);

(*Nedan tilldelas BUY Köp och SEll Sälj. Det har gjorts för att få tillfälle

visa att om du inte använder dig av BUYoch SELL så kan du i samband med presentationerna

inte få gröna och röda markeringar av signallägena. Du kan övertyga dig om det genom

att markera bort de två närmaste raderna här under.*)

BUY := Köp;

SELL := Sälj;

end;

OSC

Syntax

Y := OSC(X, l, s);

Description
The function calculates an oscillator timeseries, i e the
difference of a (longer) moving average for X with length l and
a (shorter) moving average for X with length s.

Standardfunktioner för Viking FutureLook™

© 1997-1999 Delphi Economics Sida 32

Y = −






= − + = − + =

∑ ∑1 1
1 1l
x

s
xk

k i l

i

k
k i s

i

i l

n

Example
R0 0 1 2 4 3 2

0 3 6 8 5

R1 := OSC(R0, 6, 3);

R1 -1.00
0.33 0.67 0.00 -2.00 -2.33

Standardfunktioner för Viking FutureLook™

© 1997-1999 Delphi Economics Sida 33

Modellexempel
(*Oscillatormodell

Version 981203

Här används OSC för att skapa köp- och säljsignaler. Funktionen OSC skapar

en tidsserie innehållande skillnaden mellan två medelvärden, i det här fallet

på slutkurser. Signalkurvan är här en tidsserie med 1 för unika köp och -1

för unika sälj och i övrigt nollor.*)

Par(Main : instrument;

LångtMAV, KortMAV : integer;

out UnikaKöp, UnikaSälj :booleanvector;

out Signalkurvan : realvector);

var BUY, SELL : booleanvector;

Begin

BUY := OSC(Main.Close, LångtMAV, KortMAV) > 0;

SELL := OSC(Main.Close, LångtMAV, KortMAV) < 0;

UnikaKöp := FILTERBUY(BUY,SELL);

UnikaSälj := FILTERSELL(BUY, SELL);

Signalkurvan := ONE(UnikaKöp) - ONE(UnikaSälj);

end;

PARAB3

Syntax

Z := PARAB3(L, H, a, b, c, X, Y);

Description
The function calculates the limits for going short, X, and going
long, Y, according to the parabolic trading model. The parabolic
growth rate starts at a and increments with b for each day until
it reach its maximum c. Z is the composition of X and Y. See
also TPARAB.

Det här är en funktion för parabolic metoden. Du rekommenderas
studera uppbyggnaden av en sådan modell, som du finner bland
Delphis Standardmodeller.

Standardfunktioner för Viking FutureLook™

© 1997-1999 Delphi Economics Sida 34

PTREND, see TREND

REGC

Syntax

Y := REGC(X, p);

Description
The function calculates the beta-values β for the regression
line y = α + β (x - m) where m is the mean of x over the period p
and returns them in Y.

Här har du möjlighet att skapa dig en uppfattning om den
rådande trenden som kan vara lika så god om inte bättre än
den du får genom att använda medelvärde, toppar och
bottnar, trendlinjer eller Delphis Smooth funktion.
Trendriktningen får du t.ex. ur Trendriktning :=
REGC(Main.Close, 20); trenden för de senaste 20
börsdagarna.

The beta-value for the regression line

y x x x
n

xi
i

n

= + − =
=

∑α β (), where
1

1

is calculated as follows

() ()S x x y y x
n

x y
n

yxy i i
i

n

i
i

n

i
i

n

= − − = =
= = =

∑ ∑ ∑
1 1 1

1 1
, where and

()S x x x
n

xxx i

n

i
i

n

= − =∑ ∑
=

2

1

1
i=1

, where

β = = −




 −

















= = = = =
∑ ∑ ∑ ∑ ∑S

S
n x y x y n x xxy

xx
i i

i

n

i
i

n

i
i

n

i
i

n

i
i

n

1 1 1

2

1 1

2

which gives

Standardfunktioner för Viking FutureLook™

© 1997-1999 Delphi Economics Sida 35

Y = −






−


























= − + = − + = − + = − + = − +
=

∑ ∑ ∑ ∑ ∑p kx k x p k kk
k i p

i

k i p

i

k
k i p

i

k i p

i

k i p

i

i p

n

1 1 1

2

1 1

2

Example
R0 10.0 20.0 30.0 40.0 # #

70.0 80.0 90.0 100.0

R1 := REGC(R0, 4);

R1 1.0 1.0 1.0
1.0 1.0 1.0 1.0

REGR

Syntax

Z := REGR(X, Y, p, U, V,);

Description
The function calculates the linear regression of Y relative X
over a period p at every time. It also returns the
regressionkoefficient in V and its displacement at x=0 in U.

Example
R0 10.0 20.0 30.0 40.0 50.0 60.0

65.0 70.0 75.0 80.0
R1 1.0 2.0 3.0 4.0 # 6.0

7.0 8.0 9.0 10.0

R2 := REGR(R0, R1, 4, R3, R4);

R2 4.00 5.00 6.00
7.00 8.00 9.00 10.00

R3 0.0 0.0 0.0
0.0 0.0 0.0 0.0

R4 0.1 0.1 0.1
0.1 0.1 0.1 0.1

REL

Syntax

Z := REL(X, Y);

Standardfunktioner för Viking FutureLook™

© 1997-1999 Delphi Economics Sida 36

Description
The function calculates a timeseries with X:s development
relative Y:s, i e a timeseries that starts at 1.0 and shows how
X develops relative to Y.

Z = ⋅






 =

y
x

x
y

i

i i

n
1

1 1

Du kan t.ex. använda REL för att få en uppfattning om hur en
kurs har utvecklats i förhållande till ett index. Exempel.
RelativUtveckling := REL(Main.Close, Index); där du i par
deklarerat Par(Index : instrument)….
Observera att startdagen är första dagen i tidsserien till
skillnad från REL CHNG nedan.

Example 1
R0 100 200 300 200 200 100

0 100 300 100
R1 10 20 30 20 20 10

0 10 30 10

R2 := REL(R0, R1);

R2 1.00 1.00 1.00 1.00 1.00 1.00
1.00 1.00 1.00

Example 2
R0 100 200 300 200 200 100

0 100 300 100
R1 10 40 60 40 40 20

0 5 15 5

R2 := REL(R0, R1);

R2 1.00 0.50 0.50 0.50 0.50 0.50
2.00 2.00 2.00

RELCHNG

Syntax

Y := RELCHNG(X, p);

Description
The function calculates the relative change in percent of X over
a period p.

Standardfunktioner för Viking FutureLook™

© 1997-1999 Delphi Economics Sida 37

Y =






 =

x
x

i

i

n

1 1

Example
R0 0.0 1.0 2.0 3.0 4.0 5.0

6.0 7.0 8.0 9.0

R1 := RELCHNG(R0,4);

R1 # # # # #
400.00 200.00 133.33 100.00 80.00

RELCHNGSYM

Syntax

Y := RELCHNGSYM(X, p);

Description
The function calculates the relative change of X.

Y =






 =

x
x

i

i

n

1 1

Example
R0 0.0 1.0 2.0 3.0 4.0 5.0

6.0 7.0 8.0 9.0

R1 := RELCHNGSYM(R0,4);

R1 # # # # 66.67 57.14
#

OBS Verkar rappakalja! Förklara

RELV

Syntax

Y := RELV(X);

Standardfunktioner för Viking FutureLook™

© 1997-1999 Delphi Economics Sida 38

Description
The function calculates a timeseries Y that is a normalization
of X, i e Y shows the relative development of X starting with
1.0.

Den här funktionen kan du använda om du t.ex. vill ha fram
den relativa förändringen i en slutkurs från startdagen och
framåt.

Y =






 =

x
x

i

i

n

1 1

Example
R0 100 200 300 200 200 100

0 100 300 100

R1 := RELV(R0);

R1 1.0 2.0 3.0 2.0 2.0 1.0
0.0 1.0 3.0 1.0

REVERSE

Syntax

Y := REVERSE(X);

Description
The function reverses the vector X into a vector Y.

Y =






 =

x
x

i

i

n

1 1

Example
R0 1 2 3 4 5 6

7 8 9 10
R1 := REVERSE(R0);

R1 10 9 8 7 6 5
4 3 2 1

Standardfunktioner för Viking FutureLook™

© 1997-1999 Delphi Economics Sida 39

RKV

Syntax

Z := RKV(Y, X, p);

Description
The function calculates the r-square value of an linear
regression.

β = = −




 −

















= = = = =
∑ ∑ ∑ ∑ ∑S

S
n x y x y n x xxy

xx
i i

i

n

i
i

n

i
i

n

i
i

n

i
i

n

1 1 1

2

1 1

2

Example
Y 2 3 9 1 8 7 5
X 6 5 11 7 5 4 4

Z := RKV(Y, X, 7);

Z # # # # # #
0,06

ROUND

Syntax

Y := ROUND(X);

Description
The function calculates a timeseries Y where each element is the
integer closest to the corresponding element in X. A value
ending with .5 is rounded towards the biggest integer.

Example
R0 1.27 1.49 1.50 1.51 # -1.49

-1.50 -1.51 2.0 -2.0

R1 := ROUND(R0);

R1 1 1 2 2 # -1
-1 -2 2 -2

ROUNDS

Syntax

i := ROUNDS(r);

Standardfunktioner för Viking FutureLook™

© 1997-1999 Delphi Economics Sida 40

Description
The function rouns the real r to the integer i.

RSI1

Syntax

Y := RSI1(X, p);

Description
The function calculates a relative strength index as 100 - 200 /
(1 + su/sd), where su is the sum of ups during the last p
elements and sd is the sum of downs during the same period.

()

()

Y = −

+
−

−

































−
= − +

−
= − + =

∑

∑

100
200

1
0

0

1
2

1
2

max ,

max ,

x x

x x

k k
k i p

i

k k
k i p

i

i p

n

Example
R0 100 200 300 200 200 100

0 100 300 100

R1 := RSI1(R0, 4);

R1 33.33 -33.33
-100.00 -33.33 20.00 0.00

Du kan lämpligen reducera funktion ovan till 100*(su - sd)/(su +
sd). RSI1 svarar mot att du summerar alla uppgångar och drar
ifrån summan av absoultvärdena av alla nedgångar. Dessutom
multiplicerar du med 100. Vad du har är 100 gånger skillnaden
mellan kursen från startdag till slutdag, p dagar, som divideras
med summan av volatiliteten under samma antal dagar.

Standardfunktioner för Viking FutureLook™

© 1997-1999 Delphi Economics Sida 41

RSI2

Syntax

Y := RSI2(X, p);

Description
The function calculates a relative strength index as 100 - 200 *
(su - sd)/(su + sd), where su is the sum of ups during the last
p elements and sd is the sum of downs during the same period.

() ()

() ()
Y = −

− − −

− + −



















−
= − +

−
= − +

−
= − +

−
= − + =

∑ ∑

∑ ∑
100 200

0 0

0 0

1
2

1
2

1
2

1
2

max , max ,

max , max ,

x x x x

x x x x

k k
k i p

i

k k
k i p

i

k k
k i p

i

k k
k i p

i

i p

n

Example
R0 100 200 300 200 200 100

0 100 300 100

R1 := RSI2(R0, 4);

R1 33.33
166.67 -100.00 166.67 60.00 100.00

Kolla varför inte de båda RSI funktionerna ovan ger samma
resultat.

RSI3

Syntax

Y := RSI3(X, p);

Description
The function calculates a relative strength index as su/sd,
where su is the sum of ups during the last p elements and sd is
the sum of downs during the same period.

Standardfunktioner för Viking FutureLook™

© 1997-1999 Delphi Economics Sida 42

()

()
Y =

−

−



















−
= − +

−
= − + =

∑

∑

max ,

max ,

x x

x x

k k
k i p

i

k k
k i p

i

i p

n

1
2

1
2

0

0

Example
R0 100 200 300 200 200 100

0 100 300 100

R1 := RSI3(R0, 4);

R1 2.00 0.50
0.00 0.50 1.50 1.00

R1 1 2 12 12 12 6
7 8 9 10

SHIFT

Syntax

Y := SHIFT(X, p);

Description
The function calculates a timeseries Y that is the same as X but
shifted p elements forward in time (to the right). Elements that
are shifted out to the right are discarded.
SHIFT använder du t.ex. när du vill jämföra ett tidigare värde
med ett senare. I exemplet nedan så beräknas skillnaden mellan
slutkursen idag och den för 5 dagar sedan.

{ }Y = − + =
xi p i p

n

1

Example
R0 100 200 300 200 200 100

0 100 300 100

R1 := SHIFT(R0, 4);

R1 100 200
300 200 200 100

Då gör du så här. Skillnaden := Main.Closae - SHIFT(Main.Close,
5);

Standardfunktioner för Viking FutureLook™

© 1997-1999 Delphi Economics Sida 43

SIGN

Syntax

Y := SIGN(X);

Description
The function calculates the sign of the elements in X.

Example
X: 3 0 3 -3 3 3

0 -2

Y := SIGN(X);

Y 1 0 1 -1 1 1 0
-1

SMOOTH

Syntax

Y := SMOOTH(X, f);

Description
The function calculates a timeseries Y where small changes to a
larger trend is filtered away. If the trend is upgoing and there
is a small dip it will be substitued with the current level. f
controls how large (in percent) a change in the trend should be
not to be ignored.

Den här funktionen ger dig möjlighet att från t.ex. en
sekundärtrend filtrera bort alla andra trender av lägre
dignitet. Antag t.ex. att du vill filtrera bort alla
sekundärtrenden motriktade mindre trender än de som haft en
kursutveckling mot sekundärtrenden på mer än 7 procent. Då
gör du så här. Sekundärtrend := SMOOTH(Main.Close, 7);

Example
R0 100 110 108 115 112 110

105 102 103 100

R1 := SMOOTH(R0, 10.0);

R1 100 110 110 115 115 115
105 102 102 100

Standardfunktioner för Viking FutureLook™

© 1997-1999 Delphi Economics Sida 44

SQRT

Syntax

Y := SQRT(X);

Description
The function calculates the square root of every element in X
and returns it in Y.

{ }Y =
=

xi i

n

1

Example
R0 100 25 16 10 36 64

81 # -25 0

R1 := SQRT(R0);

R1 10 5 4 3.16 6 8
9 # # 0

SQRTN

Syntax

Y := SQRTN(X, k);

Description
The function calculates the k:th root of every element in X and
returns it in Y.

{ }Y =
=

xi
k

i

n

1

Example
R0 8 10 100 1 27 64

125 # -8 0

R1 := SQRT(R0, 3);

R1 2.00 2.15 4.64 1.00 3.00 4.00
5.00 # # 0.00

Standardfunktioner för Viking FutureLook™

© 1997-1999 Delphi Economics Sida 45

STDERRXY

Syntax

Z := STDERRXY(Y, X, p);

Description
The function calculates the standard deviation for the
predictions of Y for each value in X.

β = = −




 −

















= = = = =
∑ ∑ ∑ ∑ ∑S

S
n x y x y n x xxy

xx
i i

i

n

i
i

n

i
i

n

i
i

n

i
i

n

1 1 1

2

1 1

2

Example
Y 2 3 9 1 8 7 5
X 6 5 11 7 5 4 4

Z := STDERRXY(Y, X, 7);

Z # # # # # #
3,31

STDEV

Syntax

Y := STDEV(X, p);

Description
The function calculates the standard deviation for the previous
p elements.

()Y = − −








= − −


























= − + = = − + = − +
=

∑ ∑ ∑1
1

1
1

12

1

2

1 1

2

p
x x

p
x

p
xk

k i p

i

i p

n

k
k i p

i

k
k i p

i

i p

n

Example
R0 100 110 108 115 112 110

105 102 103 100

R1 := STDEV(R0, 4);

R1 6.24 2.99 2.99
4.20 4.57 3.56 2.08

Standardfunktioner för Viking FutureLook™

© 1997-1999 Delphi Economics Sida 46

STEP

Syntax

Y := STEP(A, X);

Description
The function copies all elements in X for which the
corresponding element i A is true to Y. If the corresponding
element in A is false the same value that was copied the last
time is copied to Y.

y
x a
y a

i ni
i í

i í
=





=
−

 if is true
if is false

, for
1

1,... ,

Antag att du vill fixera kursen vid ett köptillfälle för
att kunna beräkna utfallet av köpet vid ett senare
säljtillfälle. En del i ett sådant förfarande är följande.
Köp := FILTERBUY(b1, b2); Köpkursen := STEP(Köp,
Main.Close);

Example
B0 T T F T F T

T T F T
R0 100 110 108 115 112 110

105 102 103 100

R1 := STEP(B0, R0);

R1 100 110 110 115 115 110
105 102 102 100

STOPLOSS

Syntax

C := STOPLOSS(A, B, X, f1, f2);

Description
The function adds sell signals to the sell timeseries B if any
stop-loss sell condition controlled by f1 and f2 is true for the
price timeseries X. A is the buy timeseries. Sell signals are
added if the price sinks f1 percent below the buy price or f2
percent under the maximum price after the buy.

Standardfunktioner för Viking FutureLook™

© 1997-1999 Delphi Economics Sida 47

STOPLOSS är en funktion, som du bör använda i samband med
säljvillkor. Den är så smart utformad att du har möjlighet lägga
in två stoppvillkor, det ena med utgångspunkt från köpkursen och
ytterligare en beräknade på högsta kurs från köptillfället.

Example
B0 T F F T T F

F T F F
B1 F F T F F F

F F F F
R0 105 104 100 102 120 105

105 108 105 100

B2 := STOPLOSS(B0, B1, R0, 0.02, 0.05);

B2 F F T F F T
F F F T

STRINGCOMPARE

Syntax

x := STRINGCOMPARE(str1,str2);

Description
The function compare two strings and returns -1 if str1 comes
before str2, +1 if str1 comes after str2, and zero then str1
equals str2.

Example
x := STRINGCOMPARE("jambalaja","rendeveuz");
x -1
Utveckla. Förstår ej.

SUM

Syntax

Y := SUM(X, p);

Description
The function sums vector X periodically with period p.
Här har du möjlighet att summera t.ex. unika köpsignaler för ett
antal dagar. T.ex. skulle SummaUnikaKöp := SUM(UnikaKöp, 5); ge
dig summan av alla unika köpsignaler de senaste 5 börsdagarna.

Standardfunktioner för Viking FutureLook™

© 1997-1999 Delphi Economics Sida 48

() ()Z =






 =



= =

∑ f a x y f a x y
x
yk k k

k

i

i

n

, , , ,
1 1

, where
, if is true
, if is false

a
a

Example
R0 0.0 1.0 2.0 3.0 4.0 5.0

6.0 7.0 8.0 9.0

R1 := SUM(R0,4);

R1 # # # 6.0 10.0 14.0
18.0 22.0 26.0 30.0

THETA

Syntax

Z:= THETA(X, Y, p, i, c);

Description
The function calculates the change of theoretical value of an
option one day ahead. For arguments see BS.

TimeUnit

Syntax

i := TimeUnit(timevec);

Description
The function returns the current time unit as an integer. With
the current time unit we mean the type of data the current
function in executing on. A value of 2 would mean that the
function is using day-data.

1 - Intraday
2 - Day
3 - Week
4 - Month

Example
i := TimeUnit(timevec);

Standardfunktioner för Viking FutureLook™

© 1997-1999 Delphi Economics Sida 49

i 2 (indicating that this is day-data)

TOP

Syntax

Y := TOP(X, p);

Description
Y[i] = the p:th local maximum extreme value of X before X[i].
X[i] is a local maximum extreme value if X[i-1] > X[i] and X[i]
<= X[i+1].
TOP ger dig det senaste högsta värdet för t.ex. slutkursen om du
skriver Toppvärde1 := TOP(Main.Close, 1); och det näst sista
högsta värdet om du skriver Toppvärde2 := TOP(Main.Close,2);

Example
R0 3 4 3 5 1 6

R1 := TOP(R0, 1);

R1 4 4 5 5

TOPD

Syntax

Y := TOPD(X, p);

Description
Y[i] = the distance to the p:th local maximum extreme value of X
before X[i].
X[i] is a local maximum extreme value if X[i-1] > X[i] and X[i]
<= X[i+1].
TOPD använder du när du vill ha avstånden till de senaste
topparna.

Example
R0 3 4 3 5 1 6

R1 := TOPD(R0, 1);

R1 1 2 1 2

Standardfunktioner för Viking FutureLook™

© 1997-1999 Delphi Economics Sida 50

TPARAB

Syntax

Z := TPARAB(L, H, b, c);

Description
The function calculates the limits for going short and going
long according to the parabolic trading model. The parabolic
growth rate starts at zero and increments with b for each day
until it reach its maximum c. Z is the composition of X and Y.
See also PARAB3.

TREND, PTREND, NTREND

Syntax

X := TREND(H, L, b, f, w, p);

Y := PTREND(H, L, b, f, w, p);

Z := NTREND(H, L, b, f, w, p);

Description
The functions calculates the strength of the trend. PTREND shows
the strength of the upward trend, NTREND of the downward trend,
and TREND is the sum of PTREND and NTREND. H and L are high and
low closing prices, b i time period to go back to find the
trend, f is the period for which to calculate the trend, w is
the bandwidth for the band in the backward look, p is the length
of the moving average that is used to calculate TREND from
PTREND and NTREND.
De här funktionerna används för att konstruera Wilder´s
Direktional Movement modell.

Truncate

Syntax

K := Truncate(X);

Description
The functions truncates every element in the realvector X and
converts the vector to an integervector.

Standardfunktioner för Viking FutureLook™

© 1997-1999 Delphi Economics Sida 51

Example
R0 3.21 4.9 3.031 # 198.50 31.51

I1 := TOPD(R0, 1);

I1 3 4 3 # 198 31

VMAVN

Syntax

Z := VMAVN(X, Y);

Description
The function calculates a normal moving average of length for
the timeseries X and returns it in Z. The period for the moving
average in each element of Z is given by the corresponding
element in Y.

Z =






= − + =

∑1

1 1
y

x
i

k
k i y

i

i

n

i

I VMAVN har du möjlighet att ha en medelvärdeslängd som varierar
över tiden.

Example
R0 100 105 103 101 110 112

108 115 118 120
R1 3 3 2 4 3 4

2 3 4 3

R2 := VMAVN(R0, R1);

R2 # # 104.00 102.25 104.67
106.50 110.00 111.67 113.25 117.67

VRSI1

Syntax

Z := VRSI1(X, Y);

Standardfunktioner för Viking FutureLook™

© 1997-1999 Delphi Economics Sida 52

Description
The function calculates a relative strength index as 100 - 200 /
(1 + su/sd), where su is the sum of ups during a period whose
length is detemined by the corresponding element in Y and sd is
the sum of downs during the same period.

Example
R0 100 105 103 101 110 112

108 115 118 120
R1 3 3 2 4 3 4

2 3 4 3

R2 := VRSI1(R0, R1);

R2 # # 42.86 # 38.46 46.67
-33.33 38.46 50.00 100.00

Kolla mot RSI funktionerna ovan. Plocka bort onödiga.

VSHIFT

Syntax

Z := VSHIFT(X, Y);

Description
Variable shift.

z xi i yi
= −

Här har du möjlighet att variera längden på SHIFT. Så ger t.ex.
Köpkursen := VSHIFT(Main.Close, TOPD(Köp, 1); om Köp :=
ONE(BUY);

Example
R0 100 101 102 103 104 105

106 107 108 109
R1 3 3 2 4 3 4

2 3 4 3

R2 := VSHIFT(R0, R1);

R2 # # 100 # 101 101
104 104 104 106

WSUM

Syntax

Y := WSUM(X, p);

Standardfunktioner för Viking FutureLook™

© 1997-1999 Delphi Economics Sida 53

Description
The function sums vector X weighted periodically with period p.

() ()Z =






 =



= =

∑ f a x y f a x y
x
yk k k

k

i

i

n

, , , ,
1 1

, where
, if is true
, if is false

a
a

Example
R0 0.0 1.0 2.0 3.0 4.0 5.0

6.0 7.0 8.0 9.0

R1 := WSUM(R0,4);

R1 # # # 20.0 30.0 40.0
50.0 60.0 70.0 80.0

Förklara. Förstår ej.

XOR

Syntax

C := XOR(A, B);

Description
The function calculates the logical exclusive or between the
boolean vectors A and B.

Example
B0 T F F F F T

F F F F
B1 F F F T F F

F F T F

B2 := XOR(B0, B1);

B2 T F F T F T
F F T F

XPAF

Syntax

Y := XPAF(H, L, X, a, b, c, d, e);

Standardfunktioner för Viking FutureLook™

© 1997-1999 Delphi Economics Sida 54

Description
The function calculates a lineversion of Point and Figure. It
takes the high prices, H, and low prices, L, and close prices,
X. The parameters are use box size in percentage (1 – yes), a,
and use different box size in different intervals (1 – yes), b,
and box size, c, and boxes needed for reversal, d, and use the
main rule (1 – yes), e.

YIELD

Syntax

Y := YIELD(A, B, X, d);

Description
The function calculates the yield when buying and selling a
security at the price given in X and following the buy and sell
signals in the buy timeseries A and the sell timeseries B. The
result is a timeseries Y with the yield as yearly effective
interest given in percent. d is the number of days in a year.
YIELD kan du använda för att beräkna avkastningen på din trading
i form av årsränta för det kapital och för de perioder som du
varit lång i aktien ifråga.

Example
B0 T F F F F T

F F F F
B1 F F F T F F

F F T F
R0 100 105 110 105 102 110

130 135 110 112

R1 := YIELD(B0, B1, R0, 240);

R1 0 0 0 300 300 300
300 300 150 150

Kolla att det inte är effektiv utan enkel årsränta.

	FutureLook Översikt
	Hitta i denna fil
	STARTHJÄLP
	ANVÄNDARMANUAL FUNKTIONSEDITORN
	ANVÄNDARMANUAL PRESENTATIONSEDITORN
	REFERENSMANUAL FutureLook
	STANDARDFUNKTIONER I FutureLook

